Build Your Own Paa$S
with Docker

Build Your Own PaaS with Docker

Table of Contents

Build Your Own PaaS with Docker

Credits
About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions

1. Installing Docker
What is Docker?

Docker on Ubuntu Trusty 14.04 LTS

Upgrading Docker on Ubuntu Trusty 14.04 LTS

User permissions
Docker on Mac OS X

Installation

Upgrading Docker on Mac OS X

Docker on Windows

Installation

Upgrading Docker on Windows

Docker on Amazon EC2

Installation

Open ports
Upgrading Docker on Amazon EC2
User permissions
Displaying Hello World
Summary
2. Exploring Docker
The Docker image

The Docker container

The Docker command-line interface

The Docker Registry Hub
Browsing repositories
Exploring published images

Summary

3. Creating Our First PaaS Image

The WordPress image
Moving from the defaults

Our objective

Preparing for caching
Raising the upload limit

Plugin installation

Making our changes persist

Hosting image sources on GitHub

Publishing an image on the Docker Registry Hub

Automated builds

Summary

4. Giving Containers Data and Parameters

Data volumes

Mounting a host directory as a data volume

Mounting a data volume container
Backing up and restoring data volumes
Creating a data volume images
Data volume image
Exposing mount points
The Dockerfile
Hosting on GitHub
Publishing on the Docker Registry Hub
Running a data volume container
Passing parameters to containers
Creating a parameterized image
Summary
5. Connecting Containers
Manually connecting containers
Exploring the contents of a data volume container
Connecting containers using Docker Compose
Installing Docker Compose
Basic Docker Compose commands
Service
Using the run command
Using the scale command

Setting up our PaaS with Docker Compose

Connecting containers using Crane

Installing Crane
Usage

Configuration

Summary

6. Reverse Proxy Requests

Explaining the problem

Finding a solution

Implementing the solution

Implementation with HAProxy

Installing HAProxy

Configuring HAProxy

Adding more domains to HAProxy

Implementation with Nginx

Installing Nginx

Configuring Nginx

Adding more domains to Nginx
Automating the process of mapping domains
Summary

7. Deployment on Our PaaS

The problem with our current setup

The tools/services available

Dokku — Docker-powered mini-Heroku

Installation

Creating a sample Dokku app
How Dokku works

The receive process
Dokku plugins

Dokku domains plugin
Dokku-docker-options

Volume plugin for Dokku
Dokku-link
MariaDB plugin for Dokku

Setting up a WordPress app with Dokku

Starting multiple apps
Adding a domain to Dokku

More notes on Dokku

Summary
8. What’s Next?

What is a Twelve-Factor app?

Orchestration tools

Summary

Index

Build Your Own PaaS with Docker

Build Your Own PaaS with Docker

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015
Production reference: 1010415
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-394-6

www.packtpub.com

http://www.packtpub.com

Credits

Author

Oskar Hane

Reviewers

Donald Simpson
Lawrence Taylor
Commissioning Editor
Sarah Crofton
Acquisition Editor
Rebecca Youe

Content Development Editor
Merwyn D’Souza
Technical Editors
Narsimha Pai

Mahesh Rao

Copy Editors

Dipti Kapadia

Vikrant Phadke

Project Coordinator
Neha Bhatnagar
Proofreaders

Ting Baker

Simran Bhogal

Indexer

Mariammal Chettiyar
Production Coordinator
Manu Joseph

Cover Work

Manu Joseph

About the Author

Oskar Hane is a full stack developer, with 15 years of experience in the development and
deployment of web applications. During this period, he mostly worked with start-ups and
small, fast-moving companies. He is the cofounder of several companies and has been
working as an independent contractor for the past few years. These days, Oskar works
with Neo4j, the world’s leading graph database, where he spends most of his time on the
frontend, writing JavaScript.

He lives in Sweden with his wife and daughter. He enjoys programming as well as all
kinds of sports and outdoor activities, such as hunting and fishing.

About the Reviewers

Donald Simpson is an experienced build manager, software developer, and information
technology consultant based in Scotland, UK.

He specializes in helping organizations improve the quality and reduce the cost of
software development through the adoption of continuous integration and continuous
delivery best practices.

He has designed and implemented fully automated code and environment build solutions
for a range of clients and Agile projects.

You can find out more about Donald on his website (www.donaldsimpson.co.uk).

Lawrence Taylor is armed with a PhD in mathematics. He has 7 years of experience in
developing software in a variety of sectors, from finance to travel. Charred by his number-
theoretic past, he is drawn to the abstractions and techniques required to design and build
extensible software systems.

http://www.donaldsimpson.co.uk

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

Docker is an open source project with a high-level API that provides software containers
to run processes in isolation. Packaging an app in a container that can run on any Linux
server (as well as on OS X and Windows) helps developers focus on developing the app
instead of server setups and other DevOps operations.

What this book covers

Chapter 1, Installing Docker, takes you through the Docker installation process to start a
container.

Chapter 2, Exploring Docker, gives you an insight into how Docker works and the
terminology used and introduces public images.

Chapter 3, Creating Our First PaaS Image, shows you how to create your own custom
Docker image that will be a part of your PaaS.

Chapter 4, Giving Containers Data and Parameters, teaches you about the data storing
alternatives available and how to pass parameters to your PaaS containers.

Chapter 5, Connecting Containers, shows you how to manually connect containers in
order to form a complete platform, and introduces two tools that give you more control
over multicontainer platforms.

Chapter 6, Reverse Proxy Requests, explains the problem and provides a solution to
having multiple containers on the same host, where more than one host should be
reachable on the same port.

Chapter 7, Deployment on Our Paas$, takes you through the process of deploying code to
your PaaS. Here, you learn how to create your own mini-Heroku with Dokku.

Chapter 8, What’s Next?, introduces a few projects that are in their early stages and look
promising for the future of a Docker based PaaS.

What you need for this book

e A PC/laptop running OS X, Linux, or Windows
e Internet connection

Who this book is for

This book is intended for those who want to learn how to take full advantage of separating
services into module containers and connecting them to form a complete platform. You
may have, perhaps, heard of Docker but never installed or used it; or, you may have
installed it and run a full stack container, not separating services in module containers that
connect. In either case, this book will give you all the insights and knowledge required to
run your own PaaS.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “After
some dependent images are downloaded, we should be able to see our running container
when we execute docker .ps.”

A block of code is set as follows:

<IDOCTYPE html>

<html lang="en">
<head>

<meta charset="utf-8">
<title>Hello</title>
</head>

<body>

<h1>First edit!</hi1>
</body>

</html>

Any command-line input or output is written as follows:
curl -sSL https://get.docker.com/ubuntu/ | sudo sh

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Open the Finder
window and navigate to your Applications folder; locate boot2docker and double-click
on it.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Installing Docker

In this chapter, we will find out where to download and how to install Docker on various
operating systems. Some basic Docker commands will be used so that we can verify
whether the installation was successful and to interact with Docker for the very first time.

The following topics are covered in this chapter:

What is Docker?

Docker on Ubuntu Trusty 14.04 LTS
Docker on Mac OS X

Docker on Windows

Docker on Amazon EC2

This book will take you through all the steps, from installing Docker to running your own
Platform as a Service (PaaS) so that you can push your code without having to think
about infrastructure or server provisioning.

The theme of this book will be to create a modular web application using an isolated web
server and a database.

What is Docker?

On Docker’s website, http://www.docker.com, the following definition is provided for
Docker:

“Docker is an open platform for developers and sysadmins to build, ship, and run
distributed applications.”

What this means in a more practical sense is that Docker is a way of enclosing services in
isolated environments, called containers, so that they can be packaged with all they need
in terms of libraries and dependencies and the developer can be certain that the service
will run wherever Docker runs.

http://www.docker.com

Docker on Ubuntu Trusty 14.04 LTS

The OS, flavor and version, where it’s easiest to install Docker is in Ubuntu Trusty 14.04
LTS. This is a pretty quick task since we can use the built-in package manager apt-get.

Note

Note that Docker is called docker . io here and just docker on other platforms since
Ubuntu (and Debian) already has a package named docker.

First we open a terminal and execute these commands one by one:

sudo apt-get update
sudo apt-get install docker.io
source /etc/bash_completion.d/docker.io

Here, we first update the lists of the packet manager apt -get in order to get information
about all the packages, versions, and dependencies that are available. The next line
actually installs Docker, and after that, we enable Ubuntu to tab-complete our Docker
commands.

When you’ve done this without errors, run sudo docker.io version just to verify that it
works as expected.

Note

Note that this installs the latest released Ubuntu package version, which might not
necessarily be the latest released Docker version.

In order to have the latest version from an alternative Docker-maintained repository, we
can execute the following command:

curl -sSL https://get.docker.com/ubuntu/ | sudo sh

This adds an alternative repository maintained by the Docker team and installs Docker for
you as a much more updated version than the one that comes via the Ubuntu repository.
Note that the Docker package is named 1xc-docker when it is installed this way. The
command used to run Docker commands is still docker.

Upgrading Docker on Ubuntu Trusty 14.04 LTS

To check and download upgrades, all you have to do is to execute this command in a
terminal:

sudo apt-get update && sudo apt-get upgrade

User permissions

For convenience, it’s preferred to add our user to the system’s Docker user group so that
we can control Docker without using sudo. This gives our user permission to execute
Docker commands.

Replace USER with your username before you run the code:

sudo gpasswd -a USER docker

You might have to log out and log in again for it to work. When you are logged back in,
run docker ps to verify that there are no permission problems.

Note

More detailed information can be found in the official installation guide at
https://docs.docker.com/installation/ubuntulinux/.

https://docs.docker.com/installation/ubuntulinux/

Docker on Mac OS X

To be able to use Docker on Mac OS X, we have to run the Docker service inside a virtual
machine (VM) since Docker uses Linux-specific features to run. We don’t have to get
frightened by this since the installation process is very short and straightforward.

Installation

There is an OS X installer that installs everything we need, that is, VirtualBox,
boot2docker, and Docker.

VirtualBox is a virtualizer in which we can run the lightweight Linux distribution, and
boot2docker is a virtual machine that runs completely in the RAM and occupies just about
27 MB of space.

Note

The latest released version of the OS X installer can be found at
https://github.com/boot2docker/osx-installer/releases/latest.

Now, let’s take a look at how the installation should be done with the following steps:

1. Download the installer by clicking on the button named Boot2Docker-1.3.0.pkg to
get the .pkg file, as shown in the following screenshot:

v1.3.0

(] tianon 2 commits

Boot2Docker 1.3.0 (Docker v1.3.0, Linux v3.16.4)
Boot2Docker Management Tool v1.3.0

Docker v1.3.0

VirtualBox v4.3.18-r96516

Please see the OS X installation documentation for more details.

+ Boot2Docker-1.3.0.pkg J [£] Source code (zip) ()] Source code (tar.gz)

2. Double-click on the downloaded . pkg file and go through with the installation
process.

3. Open the Finder window and navigate to your Applications folder; locate
boot2docker and double-click on it. A terminal window will open and issue a few
commands, as shown here:

https://github.com/boot2docker/osx-installer/releases/latest

& = Install Boot2Docker for Mac OS X =

Welcome to the Boot2Docker for Mac OS X Installer

Boot2Docker for Mac OS X

This installer will guide you through the steps to install Boot2Docker for
Mac O5 X v1.3.0.

Intreduction

The docker and boot 2docker binaries will be installed 10 fusr/
local/bin, and can then be run from your Terminal.

For further information, please see the Docker OS5 X installation
documentation.

To continue, click Continue.

Continue

This runs a Linux VM, named boot2docker -vm, that has Docker pre-installed in
VirtualBox. The Docker service in the VM runs in daemon (background) mode, and a
Docker client is installed in OS X, which communicates directly with the Docker
daemon inside the VM via the Docker Remote API.

You will see a screen similar to the following screenshot, which tells you to set some
environment variables:

® oskarhane — Boot2Docker for 0S¥ — bash — 89x21

To connect the Docker client to the Docker daemon, please set:
export DOCKER_HOST=tcp://192.168.59.183:2376
export DOCKER_CERT_PATH=/Users/oskarhane/ . boot2docker/certs/boot2docker-vm
export DOCKER_TLS_VERIFY=1

oskarhane@0skardj = $ %(/usr/local/bin/boot2docker shellinit)
Writing /Users/oskarhane/.boot2docker/certs/boot2docker-vm/ca.pem
Writing /Users/oskarhane/.boot2docker/certs/boot2docker-vm/cert. pem
Writing /Users/oskarhane/.boot2docker/certs/boot2docker-vm/key . pem
oskarhane@0skardj - $ docker version

Client version: 1.3.8

Client API version: 1.15

Go version (client): gol.3.3

Git commit (client): c7BOBBT

05/Arch (client): darwin/amd64

Server version: 1.3.@

Server API wversion: 1.15

Go version (server): gol.3.3

Git commit (server): c7BOBBT

oskarhane@0skardj ~ $ I

We open up the ~/.bash_profile file and paste three lines from our output, as
follows, at the end of this file:

export DOCKER_HOST=tcp://192.168.59.103:2376
export.DOCKER_CERT_PATH=/Users/xxx/.boot2docker/certs/boot2docker-vm
export DOCKER_TLS_VERIFY=1

The reason why we do this is so that our Docker client knows where to find the
Docker daemon. If you want to find the IP in the future, you can do so by executing
the boot2docker ip command. Adding the preceding lines will set these variables
every time a new terminal session starts. When you’re done, close the terminal
window. Then, open a new window and type echo $DOCKER_HOST to verify that the
environment variable is set as it should be. You should see the IP and port your
boot2docker VM printed.

. Type docker version to verify that you can use the Docker command. An output
that looks similar to the last few lines of the preceding screenshot will mean that we
have succeeded.

Upgrading Docker on Mac OS X

Since Docker is relatively new, there could be a lot happening in every update, so make
sure that you check for updates on a regular basis. From time to time, go to the Mac OS X
installer download page and check whether there is an upgrade available. If there is,
execute these commands to update it:

boot2docker stop
boot2docker download
boot2docker start

Docker on Windows

Just as we have to install a Linux virtual machine when installing Docker in OS X, we
have to do the same in Windows in order to run Docker because of the Linux kernel
features that Docker builds on. OS X has a native Docker client that directly
communicates with the Docker daemon inside the virtual machine, but there isn’t one
available for Windows yet. There is a native Windows version of the Docker client
coming, but it will not be available by the time this book is published.

Installation

There is a Windows installer that installs everything we need in order to run Docker. For
this, go to https://github.com/boot2docker/windows-installer/releases/latest.

Now, let’s take a look at how the installation should be done with the help of the following
steps:

1. Click on the docker-install.exe button to download the .exe file, as shown in the
following screenshot:

vi.3.0
(] tianon

* Boot2Docker 1.3.0 (Docker v1.3.0, Linux v3.16.4)
* Boot2Docker Management Tool v1.3.0

¢ \irtualBox v4.3.18-r96516

* msysGit v1.9.4-preview20140929

Please see the Windows installation documentation for more details.

) Source code (zip) [) Source code (tar.gz)

2. When the download is complete, run the downloaded installer. Follow through the
installation process, and you will get VirtualBox, msysGit, and boot2docker installed.

3. Goto your Program Files folder and click on the newly installed boot2docker to
start using Docker. If you are prompted to enter a passphrase, just press Enter.

4. Type docker version to verify that you can use the Docker command.

https://github.com/boot2docker/windows-installer/releases/latest

Upgrading Docker on Windows
A new software changes often and to keep boot2docker updated, invoke these commands:

boot2docker stop
boot2docker download
boot2docker start

Docker on Amazon EC2

Throughout this book, I will use an Amazon EC2 instance, and since it is a superb place to
host your PaaS, I will recommend that you do the same.

EC2 stands for Elastic Compute Cloud, and it is an infrastructure type of service. Amazon
EC2 offers virtual servers that are created and available within a minute of ordering them.

Note

Amazon has instances named t[x].micro that you can use for free for 750 hours per
month. You can read more about them at http://aws.amazon.com/free.

Amazon has its own Linux named Amazon Linux AMI that can be used to run Docker.

http://aws.amazon.com/free

Installation

Let’s see how the installation is done with the following steps:

1. Create an account at http://aws.amazon.com and go to Amazon’s Create EC2
Instance Wizard at https://console.aws.amazon.com/ec2/v2/home?
#LaunchInstanceWizard.

The next steps are shown in the screenshot as follows:

Step 1: Choose an Amazon Machine Image (AMI) S -

An AMI is a tempilate that contains the software configuration (operating system, application server, and applications) required to launch your instance. You can select an AMI| provided by AWS,
our usar community, or the AWS Marketplace; or you can select one of your own AMis.

Quick Start 1to500f 22,285 AMIs > |
My AMis
AWS Marketplace amzn-ami-hvm-2014.09.2.x86_64-ebs - ami-dic39aef m
Amazon Linux AMI 2014.09.2 xB6_64 HVM EBS
Community AMIs e4=hit

Fioot devica type: ebs Virtuslization type: hwm

~ Operating system Py RHEL-7.1_HVM_GA-20150225-x86_64-1-Hourly2-GP2 - ami-4dbf9e7d

Aoy Lt Provided by Red Hat, Inc B4-bit
Cent OS o Root device type: ebs Virbuaization type: hvm
Debian e
Fedora () 3 suse-sles-12-v20141023-hvm-ssd-xB86_B4 - ami-d7450be7
Gentoo 4 SUSE Linux Enterprise Server 12 (HVM, 64-bit, SSD-Backed) e4-bit

= -bi
OpenSUSE Rioot device typec ebs Virbuslization type: hvm
Other Linux A
Red Hat Y ® ubuntu/images/hvm-ssd/ubuntu-trusty-14.04-amd64-server-20150123 - ami-29ebb519 m
SUSE Linux

-} Root dovice type: sbs Virbualization type: hvm B4-hit
Ubuntu &
Windows >

2. Click on Community AMIs in the menu on the left-hand side and select the latest
amzn-ami-pv. Make sure that you select the pv version and not the hvm version so that
you have a virtualization that is more stable and has less overhead, as shown here:

amzn-ami-pv-2014.09.1.x86_64-ebs - ami-55a7ea65
Amazon Linux AM| 2014.09.1 xB6_64 PV EBS

Root device type: ebs Virtualization type: paravirtual

3. When it’s time to choose an instance type, you can choose tl.micro or t2.micro for
now if they are available. The micro instances are very limited in their performance,
but since they are available in the free usage tier in some regions and this is not for a
live site at the moment, we can use them. Click on Next: Configure Instance Details
and then click on the Review and Launch button, as shown in the following
screenshot:

http://aws.amazon.com
https://console.aws.amazon.com/ec2/v2/home?#LaunchInstanceWizard

Step 2: Choose an Instance Type

Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying
combinations of CPU, memory, storage, and networking capacity, and give you the flexibility to choose the appropriate mix of resources for your applications. Learn more about
instance types and how they can meet your computing needs.

Filter by: All instance types v Current generation v Show/Hide Columns

Currently selected: t2.micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory, EBS only)

Family : Type vePUs (i . Memory (GiB) - Instance Storage (GB) EBE—_OptirnIzed : Network Parfonﬂanca .
i Available | i
] General purpose [E;iIr;;EZ] 1 1 EBS only - Low to Moderate
General purpose t2.small 1 2 EBS only - Low to Moderate
General purpose t2.medium 2 4 EBS only - Low to Moderate
General purpose m3.medium 1 3.75 1x 4 (SSD) - Moderate
General purpose ma.large 2 15 1% 32 (SSD) - Moderate

Verify all the details on the summary page and click on the Launch Instance button.
You will be prompted whether you want to use an existing key-pair or create a new
one. If this is your first time creating an Amazon EC2 instance, you will want to
create a new key-pair. This makes it easy to securely connect to your instances.
Download the new key-pair, move it to your ~/.ssh/ folder, and remove the .txt
extension.

It’s also important to set the correct user permissions on the file or SSH will refuse to
use it.

In Linux or on a Mac, this is how the terminal command to do this looks:

mv ~/Downloads/amz.pem.txt ~/.ssh/amz.pem
chmod 600 ~/.ssh/amz.pem

On Windows, save the key anywhere and use a tool such as PuTTYgen to convert it
to a .ppk file, so you can use it when connecting using PuTTY.

You will be prompted to choose a security group for your instance. Pick the default
one since this won’t be a production server. When it’s time to use a production server,
we might want to add more security to our instance.

Now we’re up and running! Let’s connect to it. Click on the View Instances button
and select your newly created instance in the list, as shown here:

10.

11.

Launch Status

V Your instance is now launching

The following instance launch has been initiated: i-e14b8%eb View launch log

Q Get notified of estimated charges

Create billing alerts to get an email notification when estimated charges on your AWS bill exceed an
amount you define (for example, if you exceed the free usage tier).

How to connect to your instance

Your instance is launching, and it may take a few minutes until it is in the running state, when it will be ready for you
to use. Usage hours on your new instance will start immediately and continue to accrue until you stop or terminate
your instance.

Click View Instances to monitor your instance's status. Once your instance is in the running state, you can connect
to it from the Instances screen. Find out how to connect to your instance.

v Here are some helpful resources to get you started

s How to connect to your Linux instance + Amazon EC2: User Guide
+ Learn about AWS Free Usage Tier » Amazon EC2: Discussion Forum

While your instances are launching you can also

« Create status check alarms to be notified when these instances fail status checks. (Additional charges may apply)
« Create and attach additional EBS volumes (Additional charges may apply)
« Manage security groups

In the bottom of the screen, you can see some information about the instance. You
should be looking for the public DNS information. This is how it should look:

ec2-54-187-234-27.us-west-2.compute.amazonaws.com
On a Linux or Mac, open a terminal and connect to it:

ssh ec2-user@ec2-54-187-234-27.us-west-2.compute.amazonaws.com -1i
~/ .ssh/amz.pem

The screenshot is displayed as follows:

i [] oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 103x29

oskarhane@0skardj - $ ssh ec?-user@ec?-54-187-234-27.us-wast~-2. compute. amaronaws.com -i =/.ssh/amz.pem
The authenticity of host ‘ec2-54-187-234-27.us-west-2,compute.amazonaws,com (54.187,.234.27)" can't be e
stablished.

RSA key fingerprint is 61:59:ce:Ba:45:51:67:59:d5:bc:ec:e®:81:d1:69:7a.

Are you sure you want to continue connecting (yes/no)T ves

Warning: Permanently added 'ec?-54-187-234-27,us-west-2.compute.amazronaws.com,54.187.234,.27" (RSA) to t
he list of known hosts.

WARNING: UNPROTECTED PRIVATE KEY FILE!
Permissions 0644 for '/Usersfoskarhane/.ssh/amz.pem’ are too open.

It is required that your private key files are NOT accessible by others.
This private key will be ignored.

bad permissions: ignore key: /Users/oskarhane/.ssh/amz.pem

Permission denied (publickey).

oskarhane@0)skardj ~ $ chmod 680 —=/.ssh/amz.pem

oskarhane@0)skardj ~ $ ssh ec?-user@ec?-54-187-234-27.us-wast-2. compute. amaronaws.com -i =/.ssh/amz.pem

= =l 3
al / Amazon Linux AMI
prceed By bie preel

https: //aws, amazon . com/amazon-1inuwoami/ 2814 . 89-release-notes/

Mo packages needed for security; 4 packages available

Run “sudo yum update” to apply all updates.

-bash: warning: setlocale: LC_CTYPE: cannot change locale (UTF-8): Mo such file or directory
[ec2-user@ip-172-31-32-58 ~1s ||

We use the ec2-user user that is the default user for Amazon’s Linux instances, and
amz .pem is the key we downloaded earlier. Replace the URL with your public DNS
information from the last step.

When asked whether you want to continue because of an unknown host, type yes.

On Windows, use PuTTY and make sure that you have specified the converted
private key from step 4 in the PuTTY Auth tab.

Once you are connected to the instance, install Docker:

sudo yum update
sudo yum install -y docker
sudo service docker start

To test whether it’s working as expected, type docker version and make sure there’s
no error. You should see a few lines with the client version, API version, and so on.

Open ports

Amazon’s default security policy is to block the default ports used to expose services from
Docker, so we have to change this.

e We go back to the EC2 dashboard and click on the Security Groups option in the

menu
e Select the security group that your EC2 instance uses and select the Inbound tab

e Docker uses ports in a range from 49000 - 50000, so we add a rule for this, as shown
in the following screenshot:

Description Inbound Outbound Tags
Edit
Type (i Protocol (i Port Range (i Source (i
S5H TCP 22 0.0.0.0/0
HTTP TCP 80 0.0.0.0/0
Custom TCP Rule TCP 49000 - 50000 0.0.0.0/0

Upgrading Docker on Amazon EC2

Upgrading an Amazon Linux AMI instance is as easy as it is for Ubuntu. Type sudo yum
update and confirm whether there’s an update waiting. This command will list all the
available updates and upon your confirmation, install them.

User permissions

Docker requires commands to be run by users in the docker user group. For convenience,
we add our user to the Docker group so that we can control Docker without using sudo:

sudo gpasswd -a ec2-user docker

You might have to log out and log in again for it to work. When you are logged back in,
run docker ps to verify that there are no permission problems. You should see a row of
capitalized words, such as CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES.

Displaying Hello World

Now that we have Docker running on a machine of our choice, it’s time to make Docker
work for us. Here are a few very basic commands that we can use for some basic
interaction with the Docker daemon.

In the next chapter, all the concepts and phrases used in Docker will be explained:

docker ps: This lists the running containers

docker ps -a: This lists all the containers, both running and exited
docker images: This lists local (downloaded and locally created) images
docker run: This will launch a new instance container from an image
docker stop: This is used to stop a container

Let’s try the first one in the screenshot shown below:

21 oskarhane — bash — 127x6

Last login: Thu Oct 23 28:36:38 on ttys8al
oskarhane@0skardj ~ $ docker ps

CONTAINER ID IMAGE COMMAND
oskarhane@0skardj ~ % I

As expected, we have nothing running yet.

Launching a container is as easy as docker run [image] [command]. If the image doesn’t
exist locally, Docker will download it from the Docker Registry Hub and launch your
container when it’s downloaded.

The following steps are displayed as follows:

oskarhane@0)skardj - $ docker run oskarhane/hello echo “Hello, let me out of here
Unable to find image ‘oskarhane/hello’ locally

Pulling repository oskarhane/hello

26c2a2935d3f: Download complete

511136ea3c5a: Download complete

d497ad3926cE: Download complete

c5fcd5669fa5: Download complete

49bb1c57aB2c: Download complete

67983a9%b1599: Download complete

BBfbatfid2dE: Download complete

ecaf633ed783: Download complete

feaaa?9e24d@: Download complete

Status: Downloaded newer image for oskarhane/hello:latest
Hello, let me out of here

Type the following command in a terminal to launch a container that prints the string
Hello, let me out of here and then exits:

docker run oskarhane/hello echo "Hello, let me out of here"

This is not very useful, but we just ran a command in Ubuntu inside the container.

If we type docker ps again, we can see that we still have no running containers since we
exited the one we just started straightaway. Try using docker ps -a instead, and try
docker images.

Summary

In this chapter, we learned that Docker can be used on most operating systems and that the
installation process varies a lot depending on the OS. We had our first interaction with the
Docker daemon and launched our first container in Docker. Even though all the container
did was write a command, that’s how easy it is to start and run something inside a guest
operating system.

We have also introduced the theme that shows what this book is all about, running a
multicontainer web app of a web server container and a MySQL container: your own
PaaS.

In the next chapter, we will further explore Docker, its terminology, and the community
around it.

Chapter 2. Exploring Docker

After reading this chapter, you will find yourself more comfortable talking about and
using Docker. The following topics will be covered here:

The Docker image

The Docker container

The Docker command-line interface
The Docker Registry Hub

You will find these topics important when building your PaaS, and you will use and
interact with all of them throughout this book.

The Docker image

In the beginning, it can be hard to understand the difference between a Docker image and
a Docker (or Linux) container.

Imagine that our Linux kernel is layer zero. Whenever we run a Docker image, a layer is
put on top of our kernel layer. This image, layer one, is a read-only image and cannot be
changed or cannot hold a state.

A Docker image can build on top of another Docker image that builds on top of another
Docker image and so on. The first image layer is called a base image, and all other layers
except the last image layer are called parent images. They inherit all the properties and
settings of their parent images and add their own configuration in the Dockerfile.

Docker images are identified by an image ID, which is a 64-character long hexadecimal
string, but when working with images, we will almost never reference an image by this ID
but use the image names instead. To list all our locally available Docker images, we use
the docker images command. Take a look at the following image to see how the images
are listed:

(0] oskarhane — Boot2Docker for OSX — bash — 99x11

oskarhane@0)skardj - $ docker images

REPOSITORY TAG IMAGE ID CREATED YIRTUAL SIZE
oskarhane/docker-neodj latest 3b4a6Tb48106 19 days ago 781.1 MB
neodj latest @dd1917884eb 19 days ago 782.1 MB
neodj 2.1.5 3b2bBadfB51f 18 days ago 782.1 MB
<none> <none> 2365ed7fd589¢c 18 days ago 782 MB

oskarhane/hello latest 26c2a2935d3f 11 days ago 192.7 MB
dockerfile/java latest 913e453bda5f 12 days ago 718.2 MB
uburtu latest ecal633ed783 13 days ago 192.7 MB
<none> <none> 63816933910 12 weeks ago 1.883 GB
oskarhane@0skardj ~ $ I

Images can be distributed with different versions for us to choose from, and the
mechanism for this is called tags. The preceding screenshot illustrates this with the neo4j
image that has a latest and a 2.1.5 tag. This is how the command used to pull a specific
tag looks:

docker pull ubuntu:14.04
docker pull ubuntu:12.02

The Docker container

A Docker container is created the moment we execute docker run imagename. A
writeable layer is added on top of all the image layers. This layer has processes running on
the CPU and can have two different states: running or exited. This is the container. When
we start a container with the Docker run command, it enters the running state until it, for
some reason, stops by itself or is stopped by us and then enters the exited state.

When we have a container running, all the changes we make to its filesystem are
permanent between start and stop. Remember that changes made to the container’s
filesystem are not written to the underlying Docker image.

We can start as many instances of running containers as we want from the same image;
they will all live side by side, totally separated by each other. All the changes we make to
a container are limited to that container only.

If changes are made to the container’s underlying image, the running container is
unaffected and there is no autoupdate happening. If we want to update our container to a
newer version of its image, we have to be careful and make sure that we have set up the
data structure in a correct way, otherwise we have the risk of losing all the data in the
container. Later in this book, I will show you where to keep important data without the
risk of losing it.

The corresponding screenshot is shown as follows:

[NON | oskarhane — Boot2Docker for OSX — bash — 155x11

oskarhane@0skar4j = $ docker ps -a

CONTAINER ID IMAGE ICOMMAND CREATED STATUS HNAMES
6a2356a84a67 neod]: latest “fbin/bash -¢ /launc 10 days ago Exited (-1) 10 days ago thirsty_yonath
b63b995a49ef 63816933910 “/bin/bash -c flaunc 1@ days ago Exited (=1) 1@ days ago sleepy_hawking
36c9ebB6d30T neodj:2.1.5 “fbin/bash -c flaunc 1@ days ago Exited (@) 18 days ago tender_hawking

94702a60d226 2365ad7fd59¢c “/bin/bash -¢ flaunc 1@ days ago Exited (=1) 10 days ago hopeful_leakey
1becdd26dee2 2365edTTd59¢c “fbin/bash -c flaunc 18 days ago Exited (=1) 18 days ago nostalgic_curie
eddf388cdadd oskarhane/hello:latest “echo 'Hello, let me 11 days ago Exited (@) 11 days ago desperate_franklin
oskarhane@0skardj ~ §

A 64-character long hexadecimal string called container ID identifies Docker containers.
This ID can be used when interacting with the container, and depending on how many
containers we have running, we will usually only have to type the first four characters of
the container ID. We can use the container name as well, but it’s often easier to type the
beginning of the ID.

The Docker command-line interface

The command line interface is where we communicate with the daemon using the Docker
command. The Docker daemon is the background process that receives the commands that
are typed by us.

In the previous chapter, we ran a few Docker commands to start and stop containers as
well as to list containers and images. Now, we are going to learn a few more that will help
us when handling containers for our Paa$, as follows:

e docker logs <container-ID|name>: Everything that is written to the STDOUT
containers will end up in the file that can be accessed via this command. This is a
very handy way to output information from within a container, as shown here:

. @ oskarhane — Boot2Docker for 0S¥ — bash — 95x7

oskarhane@0skardj - $ docker run oskarhane/hello echo “Let's go for this container again. This
iz written to the stdout from inside the container."

Let's go for this container again. This is written to the stdout from inside the container.
oskarhane@0skardj ~ $ docker logs 9ad7

Let's go for this container again. This is written to the stdout from inside the container.
oskarhane@0lskardj - $

[—

e docker export <container-ID|name>: If you have a container that holds data that
you want to export, this is the command to be used. This creates a tar archive and
sends it to STDOUT:

[NON | oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 155x16

[ec2-user@ip-172-31-32-58 ~1% docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

foddedfhfod4 oskarhane/hello:latest “echo 'Important dat 6 seconds ago Exited (@) 6 seconds ago backstabbing wilson

[ec2-user@ip=-172-31=32-58 ~1% docker export f9 > exported_container_f3.tar
[ec?-user@ip-172-31-32-58 -1% 15 -la

total 174408

drwx-———- 3 ec?-user ec2-user 4996 Nov 3 21:46

drexr-xr-x 3 root root 4996 Oct 22 20:26

=(W======= | gC2-user ec2-user 261 Oct 23 29:58 .bash_history
-rw-r--r-- 1 ecZ-user ec2-user 18 Sep 26 09:25 .bash_logout
=rw=r=-r=- 1 ec2-user ec2-user 176 Sep 26 #9:25 .bash_profile
=-rw-r--r-- 1 ec2-user ec2-user 124 Sep 26 99:25 .bashrc
drwx-——-—- 2 ac2-user ec2-usar 4996 Oct 22 20:26

=rw-rw-r-= 1 ecZ-user ec2-user 178564608 Nov 3 21:46
[ec2-user@ip-172-31-32-58 ~1%

e docker cp CONTAINER:PATH HOSTPATH: If you don’t want the whole file system from
a container but just one directory or a file, you can use docker cp instead of export,
as shown in the following screenshot:

® [} oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 157=37

[ec2-user@ip=-172-31-32-58 ~1% docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS MAMES
fod9edfbfo44 oskarhane/hello:latest “echo 'Important dat 9 minutes ago Exited (@) 9 minutes ago backstabbing_wilson
[ec2-user@ip=-172-31-32-58 ~1% docker cp f9:/etc/passwd ./from_f9
[ec2-user@ip-172-31-32-58 ~1% 1s -la
total 174412
drwx- 4 ec2-user ec2-user 4096 Nov
drwxr=xr=-x 3 root root 4096 Oct
=rw== ec2-user ec2-user 261 Oct ' .bash_history
=FW=F==F= ec2-user ec2-user 18 Sep 80:25 .bash_logout
BC2-USer ec2-user 176 Sep 80:25 .bash_profile
BC2-USer ec2-user 124 Sep 80:25 .bashrc
ec2-user ec2-usar 4696 Oct 5
-rw-rw-r-- 1 ac2-user ec2-usar 178564608 Nov 21:46
drexrwxr-x 2 ec2-user ec2-user 4696 Nov 21:56
[ec2-user@ip-172-31-32-58 ~1$ cat from_f9/passwd
root:x:0:0:root: /root: /bin/bash
daemon :x: 1:1:daemon: fusr/sbin: fusr/sbin/nologin

bin:x:2:2:bin: /bin: fusr/sbin/nologin
sys:x:3:3:sys:/dev: /usr/sbin/nologin
:65534: sync: /bin: /bin/sync
60: games: fusr/games: fusr/sbin/nologin

il: /var/mail: /usr/sbhin/nologin

:news: /var/spool/news: fusr/sbin/nologin

18: uucp: /var/spool fuucp: fusr/sbin/nologin

:13:proxy: /bin: fusr/sbin/nologin

3:33: wew—data: /var/wew: fusr/sbin/nologin
4: 34 : backup: /var /backups : fusr/sbin/nologin
:x:38:38B:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd; /var/run/ired: fusr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
:x; 65534 ; 65534 nobody : /nonexistent: fusr/sbin/nologin

libuuid:x:100:101::/var/lib/libuuid:
syslog:x:101:104; : /home/syslog: /bin/false
[ec2-usereip-172-31-32-58 ~1$ I

The Docker Registry Hub

One important part of Docker’s popularity is its community and the ease with which you
can share, find, and extend Docker images. The central place for this is the Docker
Registry Hub that can be found at https://hub.docker.com/.

https://hub.docker.com/

Browsing repositories

Here, we can search and, in many ways, browse for image repositories to find exactly
what we’re after. If we take a look at the popular ones, we will see what others are using
the most.

If we click on the Ubuntu repository, we will see lots of information about the image, the
tags that are available, users’ comments, the number of stars it has, and when it was
updated.

The screenshot is displayed as follows:

® @ & ubuntu Repository | Dock. ¥
€« = C @ https//registry.hub.docker.com/ /ubuntu/

u’ A Browse Repos

@ OFFICIAL REPO
ubuntu

R . —_—
Q ‘-J- -
" oskarhane

Updated 1 week, 2 days ago

Documentation Community Help

Pull this repository | docker pull ubuntu

Official Ubuntu base image

877 34 1360134

Information Tags

Supported tags and respective e links

+» 12.04.5, 12.84 , precise (precise/Dockerfile)
= 14,84.1, 14.84, trusty, latest (trusty/Dockerfile)
« 14,10 , utopic (utopic/Dockerfile)

For more information about this image and its history, please see the relevant manifest file

{ library/ubunty) in the docker-1librory/official-imoges GitHub repo.

Ubuntu
sources.list

$ docker run ubuntu:l4.@4 grep -v "AR' Jetc/opt/sources,list

deb http://archive.ubuntu.com/ubuntu/ trusty main restricted
deb-src http://archive.ubuntu.com/ubuntu/ trusty main restricted

deb http://archive.ubuntu.coms/ubuntu/ trusty-updates main restricted
deb-src http://archive.ubuntu.com/ubuntu/ trusty-updates main restricted

deb http://archive.ubuntu.com/ubuntu/ trusty universe

deb-src http://archive.ubuntu.com/ubuntu/ trusty universe

deb http://archive.ubuntu.coms/ubuntu/ trusty-updates universe
deb-src http://archive.ubuntu.com/ubuntu/ trusty-updates universe

deb http://archive.ubuntu.coms/ubuntu/ trusty-security main restricted
deb-src http://archive.ubuntu.com/ubuntu/ trusty-security main restricted
deb http://archive.ubuntu.com/ubuntu/ trusty-security universe

deb-src http://archive.ubuntu.com/ubuntu/ trusty-security universe

$ docker run ubuntu:l2.@4 cat Sfetc/apt/sources,list

deb http://archive.ubuntu.com/ubuntu/ precise main restricted
deb-src http://archive.ubuntu.com/ubuntu/ precise main restricted

Properties

@ 2013-04-30 22:54:50
& stackbrew

nttpsy//github.com/docker-ibrary/official-images

If we click on a tag in the main view, we’ll see something called the Dockerfile. This is
the image description that runs when an image is being created. Further in this book, we’ll

write our own.

If you’re interested in an image in the Docker hub, I recommend that you read the
Information/README as well as the other users’ comments. Often, you will find valuable
information there that will help you to choose the right image and show you how to run it
in the way the maintaining developer intended to.

Often, you will find images that almost fit your needs since most images are quite general,
but as a developer, you might need specific settings or services installed.

Exploring published images

Take the official WordPress Docker image, for example
(https://registry.hub.docker.com/_/wordpress/). You’ll find it on the Docker hub’s browse
page or you can search for it.

Let’s forget about these shortcomings for now and see what the information page says:

How to use this image

docker run --name some-wordpress --link some-mysgl:mysql -d wordpress

The following environment variables are also honored for configuring your WordPress instance:

» -e WORDPRESS_DB_USER=... (defaults to “root")

+ -e WORDPRESS_DB_PASSWORD=... (defaults to the value of the MYSQL_ROOT_PASSWORD environment
variable from the linked mysqgl container)

+ -e WORDPRESS_DB_MNAME=... (defaults to "wordpress")

+ -e WORDPRESS_AUTH_KEY=..., -e WORDPRESS_SECURE_AUTH_KEY=..., -e
WORDPRESS_LOGGED_IN_KEY=... , -e WORDPRESS_NONCE_KEY=... , -e WORDPRESS_AUTH_SALT=..., -
e WORDPRESS_SECURE_AUTH_SALT=... , -e WORDPRESS_LOGGED_IN_SALT=..., -e
WORDPRESS_MONCE_SALT=. .. (default to unique random SHA1s)

If the WORDPRESS_DB_NAME specified does not already exist in the given MySQL container, it will be
created automatically upon container startup, provided that the WORDPRESS_DB_USER specified has the
necessary permissions to create it.

If you'd like to be able to access the instance from the host without the container's IP, standard port
mappings can be used:

docker run --name some-wordpress --link some-mysgl:mysql -p E088:80 -d wordpress

Then, access it via http://localhost:8088 or http:/ host-ip:808@ in a browser.

This image reads the settings from the Docker container’s environment variables. This

https://registry.hub.docker.com/_/wordpress/

means that image has to be started with the environment variables injected using the
docker run -e command, or you can --1link another container to it that injects these
variables. We’ll discuss container linking more later in this book.

Let’s see what we’ll get if we were to pull this image. Click on the link to the Dockerfile
in the apache directory:

FROM php:5.6-apache
RUN a2enmod rewrite

install the PHP extensions we need
RUN apt-get update && apt-get install -y libpngl2-dev libjpeg-dev && rm -rf
/var/lib/apt/lists/* \

&& docker-php-ext-configure gd --with-png-dir=/usr --with-jpeg-dir=/usr
\

&& docker-php-ext-install gd
RUN docker-php-ext-install mysqli

VOLUME /var/www/html

ENV WORDPRESS VERSION 4.1.1
ENV WORDPRESS UPSTREAM_VERSION 4.1.1
ENV WORDPRESS SHA1 15d38fe6c73121a20e63ccd8070153b89b2de6a9

upstream tarballs include ./wordpress/ so this gives us
/usr/src/wordpress
RUN curl -o wordpress.tar.gz -SL https://wordpress.org/wordpress-
${WORDPRESS_UPSTREAM_VERSION}.tar.gz \
&& echo "SWORDPRESS_SHA1l *wordpress.tar.gz" | shalsum -c - \
&& tar -xzf wordpress.tar.gz -C /usr/src/ \
&& rm wordpress.tar.gz

COPY docker-entrypoint.sh /entrypoint.sh

grr, ENTRYPOINT resets CMD now
ENTRYPOINT ["/entrypoint.sh"]
CMD ["apache2-foreground"]

Ok, we see that it builds on Debian Wheezy and installs Apache2, PHP5, and some other
stuff. After that, it sets a bunch of environment variables and then downloads WordPress.

We see a few lines starting with the command copy. This means that files are shipped with
the Docker image and are copied to the inside of the container when it’s started. This is
how the docker -apache.conf file shipped with the WordPress image looks:

<VirtualHost *:80>
DocumentRoot /var/www/html
<Directory /var/www/html>
AllowOverride all
</Directory>
</VirtualHost>
vim: syntax=apache ts=4 sw=4 sts=4 sr noet

The preceding line of code tells Apache where to look for files.

What about the docker-entrypoint.sh file?

The ENTRYPOINT keyword tells the Docker daemon that if nothing else is specified, this
file should be executed whenever the container is run. It is as if the whole container is an
executable file.

If we take a look at what is present inside this file, we’ll see that it basically sets up the
connection to the MySQL database and configures .htaccess and WordPress:

#!/bin/bash

set -e

if [-z "$MYSQL_PORT_3306_TCP"]; then
echo >&2 'error: missing MYSQL_PORT_3306_TCP environment variable'
echo >&2 ' Did you forget to --link some_mysql _container:mysql ?'
exit 1

fi

The first thing that is done is to check whether the user has set environment variables for
the MySQL connection. If not, it exits and writes some info to STDERR.

Why don’t you try and see whether you can trigger the MySQL error that writes error:
missing MYSQL_PORT_3306_TCP environment variable to the STDERR, as follows:

docker run --name some-wordpress -d wordpress

0@ oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 163x42

[ec2-user@ip-172-31-32-58 ~]$ docker run —-name some-wordpress -d wordpress
Unable to find image 'wordpress’' locally

Pulling repository wordpress

2604491 2df98: Download complete

511136ea3cha: Download complete

638fd9704285: Download complete
61f7f4f722fb: Download complete
686bBc32c41b: Download complete
4a9977162d59: Download complete
cd2edecedd5d: Download complete
a5bd5d642eda: Download complete
944e6afcfo08: Download complete
deda596871f1: Download complete
89cTe5e37ba?: Download complete
e4d0B7baebBb: Download complete
5d6e661adcB2; Download complete
1537c7d99475: Download complete
b40ae289b844: Download complete
118d5465balb: Download complete
660075562eab: Download complete
3ffcfda62e4T: Download complete
99110550b3b9: Download complete
87d7cd44eb5a: Download complete
5a5aef78bBal: Download complete
cBaBoB4f6ci4: Download complete
beb147b8b58L: Download complete
b76419¢22che; Download complete
0f3f80a888ce: Download complete
fB6952a71375: Download complete
cd6321c5a8le: Download complete
2bac2eb78312: Download complete
al1c1@1cacaf4d92ddc2bé1 34b477F61 cfa771dd1e102badsf 29e590aceddf 81
[ec2-user@ip-172-31-32-58 13 docker ps
CONTAINER ID THAGE COMMAND CREATED
[ec2-user@ip-172-31-32-58 ~1$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
allci@lcacaf wordpress: latest “/entrypoint.sh apac 24 minutes ago Exited (1) 24 minutes ago some-wordpress
fodoe4fbfo44 oskarhane/hello: latest “echo "Important dat About an hour ago Exited (8) About an hour ago backstabbing wilson
[ec2-user@ip=-172-31-32-58 ~1$ docker logs all
error: missing MYSQL_PORT_3386_TCP environment variable
Did you forget to —-link some_mysql_container:mysgl ?
lec2-user@ip-172-31-32-58 ~15 |

The --name some-wordpress command names the container, so we can reference it by

this name later. Also, the -d argument tells the container to run in detached mode, which
means that it does not listen to commands from where we started it anymore. The last
wordpress argument is the name of the Docker image we want to run.

If we check the log for our new container, we’ll see what the screenshot shows us: the
expected error message.

Let’s run a MySQL container and see whether we can get it to work. Navigate to
https://registry.hub.docker.com/_/mysql/ in order to get to the official MySQL docker
repository on the Docker registry hub. Here, it states that in order to start a MySQL
instance, we need to invoke docker run —name some-mysql -e
MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql in the shell. Since we are
doing this for educational purposes at the moment, we don’t have to choose a strong root
user password. After some dependent images are downloaded, we should be able to see
our running container when we execute docker ps. If we do, have a look at the
installation log by running docker logs some-mysql, as shown here:

[ec2-user@ip-172-31-32-58 ~1% docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
Unable to find image ‘mysql' locally

Pulling repository mysql

601884ab1542: Download complete

511136eaic5a: Download complete

f188079@9bc5: Download complete

f6fab3b798be: Download complete

d832c6f48cc3: Download complete

cfab4fBdB972: Download complete

cf8221608a63: Download complete

4755e812c4cf: Download complete

ed12aB65bacB: Download complete

d1fe641c4519: Download complete

9237c7d71a12: Download complete

ledcB3daab3i5: Download complete

63072d87f7fe: Download complete

e564e618e873: Download complete

91729f79abf2: Download complete

19a5518ebdde: Download complete

372b5482e145: Download complete

dd1f4cobadcB9cdc794d0b265aba3c3429b35efod] e8116821b1d1aTeddBBR68

[ec2-user@ip-172-31-32-58 ~1% docker ps

CONTAINER ID IHAGE COMMAND CREATED STATUS PORTS HAMES
dd1f4cobadcB mysql:latest "fentrypoint.sh mysq 11 seconds ago Up 18 seconds 3306/tcp some-mysql

[ec2-user@ip-172-31-32-58 ~1% docker logs dd

2014-11-11 19:43:54 @ [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server opt
ion (see documentation for more details).

2014-11-11 19:43:54 12 [Warning] Buffered warning: Changed limits: max_open_files: 1024 (requested 5808)

2014-11-11 19:43:54 12 [Warning] Buffered warning: Changed limits: table_cache: 431 (requested 2008)

2014-11-11 19:43:54 12 [Note] InnoDB: Using atomics to ref count buffer pool pages
2014-11-11 19:43:54 12 [Note] InnoDB: The InnoDB memory heap is disabled

2014-11-11 19:43:54 12 [Note] InnoDB: Mutexes and rw_locks use GOC atomic builtins
2014-11-11 19:43:54 12 [Note] InnoDB: Memory barrier is not used

2014-11-11 19:43:54 12 [Note] InnoDB: Compressed tables use zlib 1.2.3

2014-11-11 19:43:54 12 [Note] InnoDB: Using Linux native AIO

2014-11-11 19:43:54 12 [Note] InnoDB: Using CPU crc3? instructions

2014-11-11 19:43:54 12 [Note] InnoDB: Initializing buffer pool, size = 128.0M
2014-11-11 19:43:54 12 [Note] InnoDB: Completed initialization of buffer pool
2014-11-11 19:43:54 12 [Note] InnoDB: The first specified data filea ./ibdatal did not exist: a new database to be created!
2014-11-11 19:43:54 12 [Note] InnoDB: Setting file ./ibdatal size to 12 MB

2014-11-11 19:43:54 12 [Note] InnoDB: Database physically writes the file full: wait...
2014-11-11 19:43:54 12 [Mote] InnoDB: Setting log file ./ib_logfilel®l size to 48 MB
2014-11-11 19:43:56 12 [Note] InnoDB: Setting log file ./ib_logfilel size to 48 MB

https://registry.hub.docker.com/_/mysql/

Great, now we have a running MySQL container that is needed to start a WordPress
instance. Let’s start a new WordPress instance with the MySQL link in place:

docker run --name some-wordpress --link some-mysql:mysql -p 80 -d wordpress

The --1ink parameter exposes the some-mysql containers’ environment variables,
interface, and exposed ports via the environment variables injected to the some-wordpress
container.

To open a port that can be reached from the outside, port 80 is exposed via the -p 80
parameter.

If you get an error message saying Error response from daemon: Conflict, The name
some-wordpress is already assigned to allc101cacaf., you have to delete (or rename)
that container to be able to assign some-wordpress to a container again. You need to give
the new container a new name or delete the old (failing) WordPress container. Invoke
docker rm some-wordpress to delete the old container using the desired name.

When you have the container running, invoke docker ps command to find out which of
our ports was assigned to the container’s private port 80.

We can either look at the ports column in the container list, or we can invoke docker port
some-wordpress 80 to explicitly find it, as shown here:

® @ oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 161x9

[ec2-user@ip-172-31-32-58 ~1% docker run —-name some-wordpress --link some-mysql:mysql -p B8 -d wordpress

737125e61b92b1 Bf a8 B9c The9Bal 505e596ccib] beBodddc3abab1 38a667d8a

[ec2-user@ip-172-31-32-58 ~1% docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
737125e61b92 wordpress: latest “fentrypoint.sh apac 4 seconds ago Up 3 seconds 9.0.9.0:49155->88/tcp some-wordpress

dd1f4cbadcE mysql:latest *fentrypoint.sh mysq About an hour ago Up About an hour 3306/tcp some-mysql , some-wordpress/mysql
[ec2-user@ip-172-31-32-58 ~1% docker port 7371 8@

9.9.0.0:49155

[ec?-user@ip-172-31-32-58 ~1%

In my case, it was port 49155.

Enter your Docker hosts’ ip:port in your web browser to see whether you can reach it. If
you’re on your local computer running Windows or OS X, you can find your Docker IP by
invoking boot2docker ip. If you’re on a local Linux, 127.0.0.1 should be fine.

I’m doing this on Amazon EC2, so I have to go to the EC2 Management console to get my
public IP or public DNS.

Point your web browser to http://yourip:yourport (in my case, http://myamazon-
dns.com:49155) and you should be presented with this:

g
Azarbaycan dili
Brnrapcku
Bosanski

Catala

Cymraeg

Dansk

Deutsch

English (Canada)
English (UK)
English (Australia)
Espaniol

Espanol de Peru

Note

The default Amazon AWS security policy is to block the default Docker public ports, so
we have to change this in the Security Groups section in the EC2 dashboard. See the
Docker on Amazon EC2 section in Chapter 1, Installing Docker, for how to do this.

Wonderful, it works!

Summary

The Docker image can be seen as a read-only template for containers, specifying what’s
supposed to be installed, copied, configured, and exposed when a container is started.

We learned more about how we can interact with the Docker daemon and with individual
Docker containers to read logs, copy files, and export the complete filesystem.

The Docker hub was introduced and we looked at what the official WordPress Docker
image consisted of and how they configured the OS in the Dockerfile as well as in an
ENTRYPOINT file to some extent.

We downloaded and ran the WordPress image that failed as expected, and we fixed it by
linking the required MySQL container to it.

In the next chapter, we will create a Dockerfile and publish a Docker image to the Docker
registry hub so that we have a way to get our customized Docker images to wherever we
decide to place our PaaS.

Chapter 3. Creating Our First PaaS
Image

You are now ready to write your own Dockerfiles, publish them to the Docker Registry
Hub, and create containers for them. In this chapter you will:

¢ Build your own image on top of another
e Host your Dockerfiles in your GitHub account
e Publish an image on the Docker Registry Hub

The WordPress image

For this project, we are going to use the official WordPress Docker image as a base, which
has Apache? as its web server.

Note

If you plan to host sites with a lot of traffic, I would recommend using an image based on
Nginx instead of Apache2 as the web server. I have had great success running WordPress
sites with Nginx and the memcached plugin, WP-FFPC. It can be a bit tricky to set up, and
that’s why it’s out of the scope of this book.

First of all, let’s run a MySQL container and a WordPress container and link to them to see
what happens:

docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d
mysql

docker run --name some-wordpress --link some-mysql:mysql -d -p 80 wordpress
The -p 80 option tells Docker to expose the private port 80 to the outer world. To find out
which public port is bound to the private port 80, run docker ps command and look in the
ports column or invoke the docker port <container-ID|name> 80 command.

The screenshot is shown below:

® 1] oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 14Bx13

[ec2-user@ip-172-31-32-58 ~]$ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysgl
9d16db@a7208a116871ddb653da5187h7cbaeded10c5de82574b2eTh51a87bd4

[ec2-user@ip-172-31-32-58 ~]$ docker run --name some-wordpress --link some-mysql:mysql -d -p 8@ wordpress
454f@47e2eTc12e7958cbbf75d2458ed1aBf5d92db19c685dc857735edbbdefa

[ec2-user@ip-172-31-32-58 ~1% docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
454F04Te2elc wordpress: latest "fentrypoint.sh apac 42 seconds ago Up 42 seconds ©.8.2.0:49154->88/tcp some-wordpress

9d16db0a7288 mysql: latest "/entrypoint.sh mysq 47 seconds ago Up 46 seconds 3306/tcp some-mysql
[ec2-user@ip=172-31-32=58 ~]% docker port 454f 8@

9.9.0.0:49154

[ec2-user@ip-172-31-32-58 ~]% docker port some-wordpress 8@

0.0.0.0:40154

[ec2-user@ip-172-31-32-58 ~13 ||

In my case, the public port is 49154. Enter the full URL in the form of
http://public_ip:public_port in your web browser. I’'m doing this on an Amazon EC2
instance. I get a public domain, which is http://ec2-54-187-234-27.us-west -
2.compute.amazonaws.com: 49154 in my case.

The screenshot is displayed below:

g
Azarbaycan dili
Brnrapcku
Bosanski

Catala

Cymraeg

Dansk

Deutsch

English (Canada)
English (UK)
English (Australia)
Espaniol

Espanol de Peru

The WordPress installation page welcomes us, which means that the WordPress and the
MySQL containers are working properly.

Moving from the defaults

Now we have a default installation of WordPress run on Apache2. Some WordPress
plugins require you to make changes to the web server’s configuration. How can we do
that? What if we want to edit some of the files in the WordPress directory?

The first thing we need to do is to get our own copy of the official WordPress repository
so that we can explore the Dockerfile. The current URL that is used to get the repository is
https://github.com/docker-library/wordpress. Click on this link from the WordPress repo
page on the Docker Registry Hub.

You can clone, fork, or just download the source for this Docker image. It doesn’t matter
how you get it because we’re not going to use it later on. This image is for testing and
exploring purposes. I used my EC2 instance to do this.

. & oskarhane — ubuntu@®ip-172-31-32-26: ~/wordpress-master — ssh — 133x47

ubuntu@ip-172-31-32-26:~% wget https://github.com/docker-library/wordpress/archive/master.zip
-=-2015-03-25 @9:085:56-- https://github.com/docker-library/wordpress/archive/master.zip
Resolving github.com (github.com)... 192.3@.252.128

Connecting to github,com (github.com)|192,38.252.128)|:443... connected.

HTTP request sent, awaiting response... 302 Found

Location: https://cedeload.github.com/docker-library/wordpress/zip/master [following]
--2015-03-25 @9:05:56-- https://codeload.github.com/docker-library/wordpress/zip/master
Resolving codeload.github.com (codeload.github.com)... 192,38.252.145

Connecting to codelead.github.com (codeload.github.com)|192.30.252.145]:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: 1717@ (17K) [applicatien/zip]

Saving to: 'master.zip’

>] 17,17@ --.=K/%
2015-@3-25 @9:@5:57 (288 KB/s) - 'master.zip' saved [1717@/1717@]

ubuntu@ip-172-31-32-26:~% unzip master.zip
Archive: master.zip
7714595d9b77c2eaed 78489%e2f3ad4c324eBa20f
creating: wordpress-master/
inflating: wordpress-master/LICENSE
inflating: wordpress-master/README.mnd
creating: wordpress-master/apache/
inflating: wordpress-master/apache/Dockerfile
inflating: wordpress-master/apache/docker-entrypoint.sh
inflating: wordpress-master/docker-entrypoint.sh
creating: wordpress-master/fpm/
inflating: wordpress-master/fpm/Dockerfile
inflating: wordpress-master/fpm/decker-entrypoint.sh
inflating: wordpress-master/generate-stackbrew-library.sh
inflating: wordpress-master/update.sh
ubuntu@ip-172-31-32-26:~% cd wordpress-master/
ubuntu@ip=-172-31-32-26:~/wordpress-master$ ls -la
total 56
drwxrwxr-x 4 ubuntu ubuntu 4096 Mar 1@ 20:56
drwxr-xr-x 5 ubuntu ubuntu 4896 Mar 25 @9:06
=rw-rw-r=- 1 ubuntu ubuntu 18092 Mar 1@ 2@:56 LICENSE
-rw-rw-r-- 1 ubuntu ubuntu 468 Mar 156 README.md
drwxrwxr=x 2 ubuntu ubuntu 4896 Mar :56
-rwxr-xr-x 1 ubuntu ubuntu 475@ Mar 156 docke
drwxrwxr=x 2 ubuntu ubuntu 4896 Mar : 56
1 ubuntu ubuntu 873 Mar 156 ¢
=rwxr=xr=x 1 ubuntu ubuntu 621 Mar : 56
ubuntu@ip=-172-31-32-26:~/wordpress-master$ I

=FWXF=XF=X

Open the file in any text editor to view its content. If you are—like me—using the
terminal, you can use vi apache/Dockerfile to open it in the vi file editor. The current
Dockerfile for the official WordPress image looks like this:

https://github.com/docker-library/wordpress

FROM php:5.6-apache
RUN a2enmod rewrite

install the PHP extensions we need
RUN apt-get update && apt-get install -y libpngl2-dev libjpeg-dev && rm -rf
/var/lib/apt/lists/* \

&& docker-php-ext-configure gd --with-png-dir=/usr --with-jpeg-dir=/usr
\

&& docker-php-ext-install gd
RUN docker-php-ext-install mysqli

VOLUME /var/www/html

ENV WORDPRESS VERSION 4.1.1
ENV WORDPRESS UPSTREAM VERSION 4.1.1
ENV WORDPRESS SHA1 15d38fe6c73121a20e63ccd8070153b89b2de6a9

upstream tarballs include ./wordpress/ so this gives us
/usr/src/wordpress
RUN curl -o wordpress.tar.gz -SL https://wordpress.org/wordpress-
${WORDPRESS_UPSTREAM_VERSION}.tar.gz \
&& echo "$WORDPRESS_SHA1 *wordpress.tar.gz" | shalsum -c - \
&& tar -xzf wordpress.tar.gz -C /usr/src/ \
&& rm wordpress.tar.gz

COPY docker-entrypoint.sh /entrypoint.sh

grr, ENTRYPOINT resets CMD now
ENTRYPOINT ["/entrypoint.sh"]
CMD ["apache2-foreground"]

This image uses the php:5.6-apache image as a base and downloads and extracts
WordPress 4.1 to /usr/src/wordpress. Then it adds an ENTRYPOINT and starts Apache2 in
the foreground.

Our objective

To make this WordPress image useable for more than demo purposes, we need to modify
the Dockerfile in three ways. Our objectives are as follows:

e Preparing Apache for caching (through the WP Super Cache plugin)
¢ Raising the upload limit in both PHP and Apache2
¢ Installing two plugins: WP Super Cache and WP Mail SMTP

Preparing for caching

There are two small steps to be performed to obtain website caching through WP Super
Cache—we need to enable the mod_headers and mod_expires modules in Apache?2.

On line 5 in the Dockerfile, you can see RUN a2enmod rewrite. The a2enmod command
enables modules in Apache2, and modules are disabled by the a2dismod command.
Enabling our desired modules is as easy as appending them to that line:

RUN a2enmod rewrite expires headers

We make those edits, build a new image, and see what happens. It takes a long time to
build these images, since PHP is built from source. What we are looking for are lines that
state that our modules are enabled. They will show up for just a few seconds in the build
process.

You initiate a build from a Dockerfile by executing this:
docker build -t mod-wp .
The -t mod-wp command sets the name of our new image to mod-wp.

The screenshot is shown below:

@ [oskarhane — ec2-user@ip-172-31-32-58:~/wordpress-master — ssh — 118x44

[ec2-user@ip-172-31-32-58 wordpress-master]$ nano Dockerfile
[ec2-user@ip-172-31-32-58 wordpress-master]$ docker build -t mod-wp .
Sending build context to Docker daemon 11.26 kB
Sending build context to Docker daemon
Step @ : FROM php:5.6=-apache
===> 0aTaad4@9f758
Step 1 : RUN apt-get update && apt-get install -y rsync && rm -r fvar/lib/apt/lists/*
--=> Using cache
===> 3fbadad3i04b4
Step 2 : RUN a?enmod rewrite expires headers
===> Running in 57ab871986ec
Enabling module rewrite.
Enabling module expires.
Enabling module headers.
To activate the new configuration, you need to run:
service apache? restart
-==> gccT671e8459
Removing intermediate container 57ab871986ec
Step 3 : RUN apt-get update && apt-get install -y libpngl2-dev && rm -rf /var/lib/apt/lists/# && docker-php-ext-inst
all gd && apt-get purge --auto-remove -y libpngl2-dev
===» Running in 3c2c42a92c00
Get:1 http://security.debian.org jessie/updates InRelease [84.1 kB]
Get:2 http://security.debian.org jessie/updates/main amd64 Packages [2@ B]
Get:3 http://http.debian.net jessie InRelease [191 kB]
Get:4 http://http.debian.net jessie-updates InRelease [117 kB]
Get:5 http://http.debian.net jessie/main amd64 Packages [9102 kB]
Get:6 http://http.debian.net jessie-updates/main amd64 Packages [2@ B]
Fetched 9495 kB in 4s (1971 kB/s)
Reading package lists...
Reading package lists...
Building dependency tree...
Reading state information...
The following packages were automatically installed and are no longer required:
libdpkg-perl libmagicl libtimedate-perl patch
Use 'apt-get autoremove' to remove them.
The following extra packages will be installed:
libpng12-@ zliblg-dev
The following NEW packages will be installed:
libpng12-@ libpngl2-dev zliblg-dev
@ upgraded, 3 newly installed, @ to remove and 37 not upgraded.
Need to get 626 kB of archives.
After this operation, 134@ kB of additional disk space will be used.
Get:1 http://http.debian.net/debian/ jessie/main libpngl12-@ amd64 1.2.5@-2+b1 [172 kB]
Get:2 http://http.debian.net/debian/ jessie/main zliblg-dev amd64 1:1.2.8.dfsg-2 [2@5 kB]

The build should run through the whole process without any errors, and then the
preparation for the cache plugin is done.

Raising the upload limit

The default upload size is limited to 2 MB by PHP. This limit is too low, especially since
blogging from mobile phones is popular and the size of a mobile phone photo or video is
often bigger than this. I would like to have the option to upload videos directly on my
blogs, and they can be up to 32 MB.

For this limit to be raised, we need to change the limit for two parameters in the PHP
configuration file: upload_max_filesize and post_max_size.

Looking at the php:5.6-Apache image, which is the base image of the WordPress image,
Dockerfile we see that it runs Debian and PHP configuration files are supposed to be in
the /usr/local/etc/php/conf.d/ directory. This means that if we add a file to that
directory, it should get read in and parsed.

Note

The Dockerfile for PHP 5.6 can be found at https://github.com/docker-
library/php/blob/master/5.6/Dockerfile.

To verify that the upload limit is as low as said before, I started and installed an
unmodified WordPress container. Then I clicked on the Add new media button.

: Help
K1 Deshigard Upload New Media

A Posts

07 Media

Library
Add New
B P
L Select Files
P Comments

»¥ Appearance L)
You are using the multi-file uploader. Problems? Try the browser uploader instead.

i Plugins @
o B Maximum upload file size: 2 MB.

e Users

Tools
Settings

o Collapse menu

It says that the upload limit is 2 MB.

Let’s add a configuration file named upload-1imit.ini to the configuration directory, and
add the two parameters to the file.

https://github.com/docker-library/php/blob/master/5.6/Dockerfile

These commands, all of which should be on a single line, are added to our Dockerfile right
above the line we modified when preparing Apache for caching:

RUN touch /usr/local/etc/php/conf.d/upload-limit.ini \

&& echo "upload_max_filesize = 32M" >>
/usr/local/etc/php/conf.d/upload-limit.ini \

&& echo "post_max_size = 32M" >> /usr/local/etc/php/conf.d/upload-
limit.ini
#Paste above this line.
RUN a2enmod rewrite expires headers

Once again, build the image to ensure that no errors are produced. If you get an error
saying that the image name already exists, you can delete the old image with the docker
rmi mod-wp command or change the name to mod-wp:latest, which will update the
image’s tag to latest.

When the build finishes, we run a new container from the new image to check out what

the WordPress administration interface says. We can run a container from our new image,
like this:

docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d
mysql

docker run --name some-wordpress --link some-mysqgl:mysql -d -p 80 mod-
wp:latest

5} # mod 4+ New Howdy, admin [}

| Help
@ Dashboard Upload New Media

A Posts

07 Media

Library
Add New
B Pages
= B! Select Files
P Comments

»¥ Appearance)
You are using the multi-file uploader. Problems? Try the browser uploader instead.

i Plugi
- ol Maximum uplead file size: 32 MB.

o Users

4 Tools
Settings

© Collapse menu

We can now see that we can upload bigger files. Just to verify, if you upload a file bigger
than 2 MB, it will prove that the limit has been raised.

Plugin installation

Here, we are going to download and install two plugins that we want in all our future
WordPress sites. All the tasks for these plugins will be done in the entry point file, since
we have to edit a few files in the WordPress installation.

The first plugin is WP Super Cache. We prepared Apache? for this earlier, and now it’s
time to use that. With this plugin, our site will run faster and demand fewer resources from
our host.

The second plugin is WP Mail SMTP, with the help of which WordPress can send
outgoing e-mails. This container does not (and should not) include a mail server. With this
plugin, we can make WordPress send e-mails via an external SMTP (Gmail, your ISPs, or
anything else).

Note

Even though I have hosted and managed my own mail server for a few years now, it is a
hassle with keeping it up to date and managing spam filters and redundancy. We’re better
off leaving that to the specialists.

All plugins will be downloaded with CURL and unpacked with unzip. CURL is already
installed but unzip is not, so we have to add it to our Dockerfile, close to the top where the
apt-get install command is running:

RUN apt-get update && apt-get install -y unzip rsync && rm -r
/var/lib/apt/lists/*

If we don’t do this, we will get error messages during the build process.

Since there are two plugins we have to download, extract, and activate, we will create a
function in the docker-entrypoint.sh file.

This function will go to Wordpress’ plugin site and look for the download URL for the
latest version of the plugin. It will download and then extract it to the plugin folder in our
Wordpress installation:

dl_and_move_plugin() {

name="$1"

curl -0 $(curl -i -s "https://wordpress.org/plugins/$name/" | egrep -o
"https://downloads.wordpress.org/plugin/[A']+")

unzip -o "$name".*.zip -d $(pwd)/wp-content/plugins

}

Now that we have the function there, we can add these lines near the end of the file, just
above the line that says chown -R www-data:www-data ..:

dl_and_move_plugin "wp-super-cache"
dl_and_move_plugin "wp-mail-smtp"

Place the function and the function calls close to the bottom—in the docker -

entrypoint.sh file, just above the exec command.

We will build the image again and start a container so that we can verify that everything is
working as we want:

docker build -t mod-wp:latest

This will take a while, and when it’s ready, you can fire up a MySQL container and a mod -

wp container:

docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d

mysql

docker run --name some-wordpress --link some-mysql:mysql -d -p 80 mod-

wp:latest

If you get an error that tells you that you already have a container with that name, either
remove the old container with docker rm some-wordpress or use another name for the

new container.

Get the port by invoking docker ps, and look for the port binding to port 86 on the
WordPress container. Then load the URL into your browser. This time, install WordPress,
log in, and go to the plugins page, as shown in the following screenshot:

A mmm

% Dashboard

Posts

07 Media

M Pages

¥ Comments

A Appearance
K¢ Plugins 1
Installed Plugins
Add New

Editor

e Users

4~ Tools

[Settings

Plugins add new

All | Inactive

Bulk Actions ¥ Appl

Plugin

Akismet

Activate = Edit

| Update Available

y

Delete

Howdy, admin r

Search Installed Plugins

5irems

Description

Used by millions, Akismet is quite possibly the best way in the world to protect your blog from
comment and trackback spam. |t keeps your site protected from spam even while you sleep. To get
started: 1) Click the "Activate” link to the left of this description, 2) Sign up for an Akismet API key, and
3) Go to your Akismet configuration page, and save your AP| key.

Version 3.0.2 | By Automattic | View details

£ There is a new version of Akismet available. View version 3.0.3 details or update now.

Hello Dolly
Activate = Edit

Two Factor Auth
Activate | Edit

WP-Mail-SMTP
Activate | Edit

WP Super Cache
Activate Edit

Plugin

Bulk Actions &

Delete

Delete

Delete

Delete

Apply

This is not just a plugin, it symbolizes the hope and enthusiasm of an entire generation summed up in
two words sung most famously by Louis Armstrong: Hello, Dolly. When activated you will randomly
see a lyric from Hello, Dolly in the upper right of your admin screen on every page.

Version 1.6 | By Matt Mullenweg | View details

Secure your WordPress login with two factor auth. Users will be prompted with a page to enter a One
Time Password when they login.

Version 4.4 | By Oskar Hane | View details
Reconfigures the wp_mail() function to use SMTP instead of mail() and creates an options page to
manage the settings.

Version 0.9.5 | By Callum Macdonald | View detalls

Very fast caching plugin for WordPress.

Version 1.4.2 | By Automattic | View details

Description

This looks just like we want it to! Great!

Let’s go ahead and activate and set up these plugins just to verify that they work. Start
with the WP Mail SMTP plugin. I will use my Gmail account as the sender, but you can
choose which SMTP you want. Here is a screenshot showing the settings for Gmail:

& mmm <1

Dashboard

Posts
Media
Pages

Comments

Appearance
Plugins @
Users
Tools
Settings
General
Writing
Reading
Discussion
Media

Permalinks

Email

© Collapse menu

B0 4 New

Howdy, admin [A |

Advanced Email Options

Settings saved.

From Email

From Name

Mailer

Return Path

SMTP Options

oskar.hane@gmail.com

address that emails should be sent from. If you leave this blank, the default email will be
used.

You can specify the email

WP You can specify the name that

emails should be sent from. If you leave this blank, the emails will be sent from WordPress.

* Send all WordPress emails via SMTP.

Use the PHP mail() function to send emails.

¥| Set the return-path to match the From Email

These options only apply if you have chosen to send mail by SMTP above.

SMTP Host

SMTP Port

Encryption

Authentication

Username

Password

smip.gmail.com

587

No encryption.

Use SSL encryption.

-

Use TLS encryption. This is not the same as STARTTLS. For most servers SSL is the
recommended option.

No: Do not use SMTP authentication.
* ' Yes: Use SMTP authentication.
If this is set to no, the values below are ignored.

oskar.hane@gmail.com

hunterlie

From the bottom of this page, you can send a test e-mail. I strongly recommend doing this
because Gmail sometimes blocks new SMTP clients. If you get an error message saying
Please log in via your web browser and then try again, you’ve triggered that. In that
case, you’ll soon get an e-mail from Google explaining suspicious activity and asking you
to go through a few steps to make it work. This is annoying but it’s a good thing.

Now let’s move on to the WP Super Cache plugin. Go ahead and activate the plugin from
the plugin page. Before we can enable it, we have to go to Settings | Permalinks, check

the Post name button, and save.
Then go to Settings | WP Super Cache.

Click on Caching On and then on Update Status. Now click on the Advanced tab and
enable mod_rewrite caching, as shown:

WP Super Cache Settings

Easy Advanced CDN Contents Preload Plugins De

Caching v Cache hits to this website for quick
access. (Recommended)

* lUse mod_rewrite to serve cache
files. (Recommended)

Use PHP to serve cache files.

Legacy page caching.
Mod_rewrite is fastest, PHP is almost as
fast and easier to get working, while
legacy caching is slower again, but more
flexible and also easy to get working. New
users should use PHP caching.

Scroll down to the Miscellaneous section and check the boxes that are shown in the
following screenshot. If you want to know exactly what all of these checkboxes do, you

can refer to the plugins’ documents.

Miscellaneous ¥| Compress pages so they're served more
quickly to visitors. (Recommended)

Compression is disabled by default because
some hosts have problems with compressed
files. Switching it on and off clears the cache.

304 Not Modified browser caching.
Indicate when a page has not been modified
since last requested. (Recommended)

Warning! 304 browser caching is only
supported when not using mod_rewrite
caching.

¥| Don't cache pages for known users.
(Recommended)

Don't cache pages with GET parameters.
(?x=y at the end of a url)

Make known users anonymaous so
they're served supercached static files.

¥| Cache rebuild. Serve a supercache file to
anonymous users while a new file is being
generated. (Recommended)

Proudly tell the world your server is
Stephen Fry proof! (places a message in
your blog's footer)

When you’ve saved this, you’ll get a notice at the top saying that you need to update the
rewrite rules, as shown:

WP Super Cache Settings

Rewrite rules must be updated

The rewrite rules required by this plugin have changed or are missing. Scroll down the
Advanced Settings page and click the Update Mod_Rewrite Rules button.

Scroll down the page and click on the Update Mod_Rewrite Rules button to update the
rewrite rules, as shown:

</IfMcdule>
<IfModule mod deflate.c>
SetEnvIfNoCase Request URI \.gz$ no-gzip
</IfModule>
<IfModule mod_headers.c>
Header set Vary "Accept-Encoding, Cookie"
Header set Cache-Control 'max-age=3, must-revalidate'
</IfMocdule>
<IfModule mod expires.c>
Expireshctive On
ExpiresByType text/html A3
</IfModule>
END supercache

Update Mod_Rewrite Rules |

The cache plugins’ status should now be green, and all of the setup should be done. Since
we are logged in to this web browser, we will not be served cached pages. This is
important to know, and the advantage is that you won’t have to disable the whole cache
plugin just to see the uncached version of your site. Open another web browser (not just
another window or tab in your current browser, unless you are using incognito or private
mode) and go to your WordPress instance. Click on the Hello World title on the post. Go
back to the start page. Click on the title again. It feels pretty fast, right?

To verify that it works, you can open the development tools in your browser. Make sure
that you don’t have caching disabled in your browser when the development tolls are
open. Click on the Network tab, then click on the post’s title again, and then inspect that
call, as shown in the following screenshot:

E hello-world

;EL— cssffamily=Lata®3A300%. ..
= fonts.googleapis.com

genericons.css?ver=3.0.3

style.css?ver=4.0.1
Swp-content/themes /twe. ..

jquery.jsiver=1.11.1
Iwp-includes/fjs/jquery

JSwp-includes /js/jquery

O.gravatar.com/avatar

Iwp-includesfjs

functions.jstver=20140616
/wp-contentfthemes /twe...

e il |
g il |

fonts.gstatic.com/s flato/...

bRl

fonts.gstatic.com/s flato/...

MgMNrSy1C_tIEULEmiclm...
fonts.gstatic.com/s flato/...

L |

¥ Request Headers
J/wp-content/themes [twe. ..

jquery-migrate.min.js?ver...
ad516503allcd5cad35ac...

¥ Response Headers
comment-reply.min.js?ver. .

2 Z2JRxvfaNxSmnAhzbFHEP. ..

MDadnBDQ IoTekvnlg_2...

Remote Address: 54.148,253.1B7:49156

Request URL: http://ec2-54-148-253-187.us—west—2.compute. amazonaws . com: 49
156/helle—world/

Request Method: GET

Status Code: @& 208 0K

view source

Accept: text/html,application/xhtml+xml,application/xml;q=8.9, image /webp
y=S%;0=0.8

Accept-Encoding: gzip, deflate, sdch

Accept-Language: sv-5SE,sv;q=0.8,en-U5%;g=0.6,en;q=0.4

Connection: keep-alive

Host: ec?2-54-148-253-187.us—west-2. compute. anazonaws. com: 49156
If-Modified-Since: Mon, 24 Nov 2814 19:56:1@ GMT

Referer: http://ec2-54-148-253-187.us—west-2. compute. arazonaws . com: 49156
!

User-Agent: Mozilla/5.8 (Macintosh; Intel Mac 05 X 1@8_18_1) AppleWebKit
/537.36 (KHTML, like Gecko) Chrome/39.8.2171.65 Safari/537.36

view source

Cache-Control: max-age=3, must-revalidate

Connection: Keep-Alive

Content-Encoding: gzip

Content-Length: 3565

Content-Type: text/html; charset=UTF-B

Date: Mon, 24 Nov 2814 19:57:26 GMT

Keep-Alive: timeout=5, max=95%

Last-Modified: Mon, 24 Nov 2814 19:56:18 GMT

Serve '
ry. Accept—Encoding, Cookie
WP-Super-Cache: Served supercache file from PHP
wered-By: PHP/5.6.3

This is just what we wanted to see. Great!

Making our changes persist

Now that we have made our changes, we want to create our own Dockerfile to build on
top of the official WordPress image.

This is what the Dockerfile should look like:

FROM wordpress:latest
RUN apt-get update && apt-get install -y unzip && rm -r
/var/lib/apt/lists/*
RUN touch /usr/local/etc/php/conf.d/upload-limit.ini \
&& echo "upload_max_filesize = 32M" >>
/usr/local/etc/php/conf.d/upload-limit.ini \
&& echo "post_max_size = 32M" >> /usr/local/etc/php/conf.d/upload-
limit.ini
RUN a2enmod expires headers
VOLUME /var/www/html
COPY docker-entrypoint.sh /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]
CMD ["apache2", "-DFOREGROUND"]

Hosting image sources on GitHub

The Docker Registry Hub has very good support for automatic fetching of image updates
from both Bitbucket and GitHub. You can pick whatever you want, but for this book, I
will use GitHub. I have accounts on both services and they are both excellent.

Owner Repository name

[l oskarhane~ /| my-dockerimages v

Great repository names are short and memorable. Need inspiration? How about yolo-tribble.
Description (optional)

Docker Images that the Docker Registry Hub can access.

[+] Public
Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

@ Initialize this repository with a README
This will allow you to git clone the repository immediately. Skip this step if you have already run git init locally.

Add .gitignore: None - Add alicense: None ~

At GitHub, create a new empty repository called my-docker -images and add an
appropriate license if you like.

Note

This book will not go into how to add your SSH keys to GitHub and so on. There are
excellent guides for this online. GitHub has a great guide at
https://help.github.com/articles/generating-ssh-keys/.

Let’s create a branch and copy our files for the modified Docker image to it.

Clone the repository locally so that you can add files to it. Make sure you are not inside
your wordpress-master directory, but on the same level as it is:

git clone git@github.com:yourusername/my-docker-images.git

The output of this command is as follows:

https://help.github.com/articles/generating-ssh-keys/

. oskarhane — ec2-user@ip-172-31-32-58:~/my-docker-images — ssh — 100x18

[ec2-user@ip-172-31-32-58 ~]% git clone git@github.com:oskarhane/my-docker-images.git
Cloning into 'my-docker-images’...
remote: Counting objects: 3, done.
remote: Compressing objects: 10X (2/2), done.
remote: Total 3 (delta @), reused @ (delta @)
Receiving cbjects: 10@% (3/3), done.
Checking connectivity... done.
[ec2-user@ip-172-31-32-58 ~1% cd my-docker-images && ls -la
total 16
drwxrwxr-x 3 ec2-user ec2-user 4096 Nov 17 2@:50
ec2-user ec2-user 4096 Nov 17 2@:50
drwxrwxr-x B ec2-user ec2-user 4096 Nov 17 20:50
=rw=-rw-r=- 1 ec2-user ec2-user 9@ Nov 17 2@:59 README.md
[ec2-user@ip-172-31-32-58 my-docker-images]$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
nothing to commit, working directory clean
[ec2-user@ip-172-31-32-58 my-docker-images]$

We’ll execute these commands one by one:

cd my-docker-images

git checkout -b wordpress

git add

git commit -m "Adding new files."
git push origin wordpress

Go to your GitHub page and try to find the WordPress branch.

For every new Docker image we want to create and publish on the Docker Registry Hub,
we need to create a new branch in this GitHub repository. If you have a lot of Docker
images and the images have a lot of versions, you might want to consider a different
structure, but for this book, this approach will be great!

B | oskarhane / my-docker-images

Docker Images that the Docker Registry Hub can access. — Edit
2 commits 3 branches 0 releases

Your recently pushed branches:

V¥ wordpress (2 minutes ago)

P branch: wordpress ~ = my-docker-images / +

This branch Is 1 commit ahead of master

Add files.

oskarhane authared 2 minutes ago

[E Dockerfile Add files.
[E README.md Add files.
[docker-entrypoint.sh Add files.
[E generate-stackbrew-library.sh Add files.
[update.sh Add files.

@ Unwatch~ 1

1 contributor

'| Pull Requast Compare

latest commit 9fS5568f7d8
2 minutes ago
2 minutes ago
2 minutes ago
2 minutes ago

2 minutes ago

All files are in place, and you can click on them to verify that the contents are what we

would expect.

Publishing an image on the Docker
Registry Hub

If you’re not a member of the Docker Registry Hub (https://hub.docker.com), now is the
time to register so that you can publish your images on the public Docker repository,
which can be accessed from anywhere.

https://hub.docker.com

Automated builds

When you add a repository, you should choose the Automated Build option so that you
can fetch code from GitHub (or Bitbucket), as shown in the following screenshot:

Select the source you want to use for your Automated Build

|~
GitHub Bitbucket

B

You are connected as oskarhane

We’ll connect with our GitHub account and select the repository we just created and
pushed to my-docker -images.

We will start to add our WordPress image, so let’s set the repository name to wordpress on
the next screen. It’s important that you enter this name correctly, since it cannot be
changed later.

At this time, we will just use one tag for our image—the latest tag. Ensure that the source:
Type is set to Branch and that you’ve entered wordpress as its name.

Choose to add this as a public repository and check the active checkbox. This means that
if you push any updates to this on GitHub, the Registry Hub will automatically pull it and
publish its changes, as shown in the following screenshot:

Namespace (optional) and Repository Name
oskarhane ~ [/ wordpress o

New unigue Repo name; 3 - 30 characters. Dm’j‘ lowercase letters, digits and _ - . characters are allowed

Tags
Type Name Dockerfile Location Docker Tag Name
Branch A wordpress / latest
© Public

' Anyone can pull, and is listed and searchable on the docker index.
) Private

& Only you can pull, and is not listed on the docker index.

Active:

When active we will build when new pushes cccur

Create Repository

The Registry Hub will now pull your branch and try to build your Docker image to verify
that it works. You can head over to the Build Details tab to see the progress. Since it’s the
official WordPress image base, it should go pretty fast if they cache the images on their
build servers. If not, it could take a few minutes, since PHP is compiled from source.

This is shown in the following screenshot:

0

Information Dockerfile Build Details Tags
Build Details Edit Build Details
Type Name Dockerfile Location Tag Name
Branch wordpress / latest
Builds History
build Id Status Created Date Last Updated
bdebwe26bizth7xbhrlvsyc Building 2014-11-24 22:59:33 2014-11-24 23:00:03

Wow! We’ve just published an image on the Docker Registry Hub, which means that
anyone can fetch and run containers on top of it. The status will go from Building to
Finished when the image is published.

The next step would be to actually pull it ourselves to verify that it works as expected:

docker pull oskarhane/wordpress

docker images

docker run --name mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
docker run --name my-wordpress --link mysqgl:mysql -d -p 80
oskarhane/wordpress

docker ps

Open your web browser and head over to your new container. You should be presented
with the WordPress setup page.

Summary

In this chapter, you learned quite a lot. The most part was about modifying the Dockerfile
and ENTRYPOINT files in order to get the Docker image that we wanted. Bash knowledge
and programming skills are very convenient, but since all of this is mostly about
installation, moving files, and editing settings files, very basic knowledge can be enough.

GitHub is an excellent place to host your Docker repositories, and it’s very easy to set up a
new repository to get started. The Docker Registry Hub takes your GitHub repository and
lets you pick a branch. This branch will be the source for a public Docker image that
anyone can pull and use.

One question arises though; what about our data? It’s trapped inside these MySQL and
WordPress containers. The next chapter will show you how to handle your data.

Chapter 4. Giving Containers Data and
Parameters

The WordPress data inside the WordPress container and the database’s data inside the
MySQL container may not be what we want. It’s considered good practice to keep the data
outside the service containers because you may want to separate the data from the service
container. In this chapter, we’ll cover the following topics:

Data volumes

Creating a data volume image

Host on GitHub

Publishing on Docker Registry Hub
Running on Docker Registry Hub
Passing parameters to containers
Creating a parameterized image

Data volumes

There are two ways in which we can mount external volumes on our containers. A data
volume lets you share data between containers, and the data inside the data volume is
untouched if you update, stop, or even delete your service container.

A data volume is mounted with the -v option in the docker run statement:

docker run -v /host/dir:container/dir

You can add as many data volumes as you want to a container, simply by adding multiple
-v directives.

A very good thing about data volumes is that the containers that get data volumes passed
into them don’t know about it, and don’t need to know about it either. No changes are
needed for the container; it works just as if it were writing to the local filesystem. You can
override existing directories inside containers, which is a common thing to do. One usage
of this is to have the web root (usually at /var/www inside the container) in a directory at
the Docker host.

Mounting a host directory as a data volume

You can mount a directory (or file) from your host on your container:

docker run -d --name some-wordpress -v /home/web/wp-one:/var/www wordpress

This will mount the host’s local directory, /home/web/wp-one, as /var/www on the
container. If you want to give the container only the read permission, you can change the
directive to -v /home/web/wp-one:/var/www:ro where the :ro is the read-only flag.

It’s not very common to use a host directory as a data volume in production, since data in
a directory isn’t very portable. But it’s very convenient when testing how your service
container behaves when the source code changes.

Any change you make in the host directory is direct in the container’s mounted data
volume.

Mounting a data volume container

A more common way of handling data is to use a container whose only task is to hold
data. The services running in the container should be as few as possible, thus keeping it as
stable as possible.

Data volume containers can have exposed volumes via the Dockerfile’s VOLUME keyword,
and these volumes will be mounted on the service container while using the data volume
container with the - -volumes-from directive.

A very simple Dockerfile with a VOLUME directive can look like this:

FROM ubuntu:latest
VOLUME ["/var/www"]

A container using the preceding Dockerfile will mount /var/www. To mount the volumes
from a data container onto a service container, we create the data container and then
mount it, as follows:

docker run -d --name data-container our-data-container
docker run -d --name some-wordpress --volumes-from data-container wordpress

Backing up and restoring data volumes

Since the data in a data volume is shared between containers, it’s easy to access the data
by mounting it onto a temporary container. Here’s how you can create a .zip file (from
your host) from the data inside a data volume container that has VOLUME ["/var/www"] in
its Dockerfile:

docker run --volumes-from data-container -v $(pwd):/host ubuntu zip -r
/host/data-containers-www /var/www

This creates a .zip file named data-containers-www.zip, containing what was in the.
www data container from var directory. This .zip file places that content in your current
host directory.

Creating a data volume images

Since our data volume container will just hold our data, we should keep it as small as
possible to start with so that it doesn’t take lots of unnecessary space on the server. The
data inside the container can, of course, grow to be as big as the space on the server’s disk.
We don’t need anything fancy at all; we just need a working file storage system.

For this book, we’ll keep all our data (MySQL database files and WordPress files) in the
same container. You can, of course, separate them into two data volume containers named
something like dbdata and webdata.

Data volume image

Our data volume image does not need anything other than a working filesystem that we
can read and write to. That’s why our base image of choice will be BusyBox. This is how
BusyBox describes itself:

“BusyBox combines tiny versions of many common UNIX utilities into a single small
executable. It provides replacements for most of the utilities you usually find in GNU
fileutils, shellutils, etc. The utilities in BusyBox generally have fewer options than
their full-featured GNU cousins; however, the options that are included provide the
expected functionality and behave very much like their GNU counterparts. BusyBox
provides a fairly complete environment for any small or embedded system.”

That sounds great! We’ll go ahead and add this to our Dockerfile:
FROM busybox:latest
Exposing mount points

There is a VOLUME instruction for the Dockerfile, where you can define which directories to
expose to other containers when this data volume container is added using - -volumes-
from attribute. In our data volume containers, we first need to add a directory for MySQL
data. Let’s take a look inside the MySQL image we will be using to see which directory is
used for the data storage, and expose that directory to our data volume container so that
we can own it:

RUN mkdir -p /var/lib/mysql
VOLUME ["/var/1lib/mysql"]

We also want our WordPress installation in this container, including all . php files and
graphic images. Once again, we go to the image we will be using and find out which
directory will be used. In this case, it’s /var/www/html. When you add this to the
Dockerfile, don’t add new lines; just append the lines with the MySQL data directory:

RUN mkdir -p /var/lib/mysql && mkdir -p /var/www/html
VOLUME ["/var/1lib/mysql", "/var/www/html"]

The Dockerfile

The following is a simple Dockerfile for the data image:

FROM busybox:latest

MAINTAINER Oskar Hane <oh@oskarhane.com>

RUN mkdir -p /var/lib/mysql && mkdir -p /var/www/html
VOLUME ["/var/lib/mysql", "/var/www/html"]

And that’s it! When publishing images to the Docker Registry Hub, it’s good to include a
MAINTAINER instruction in the Dockerfiles so that you can be contacted if someone wants,
for some reason.

Hosting on GitHub

When we use our knowledge on how to host Docker image sources on GitHub and how to
publish images on the Docker Registry Hub, it’ll be no problem creating our data volume
image.

Let’s create a branch and a Dockerfile and add the content for our data volume image:

git checkout -b data

vi Dockerfile
git add Dockerfile

On line number 2 in the preceding code, you can use the text editor of your choice. I just
happen to find vi suits my needs. The content you should add to the Dockerfile is this:

FROM busybox:latest

MAINTAINER Oskar Hane <oh@oskarhane.com>

RUN mkdir /var/lib/mysql && mkdir /var/www/html
VOLUME ["/var/lib/mysql", "/var/www/html"]

Replace the maintainer information with your name and e-mail.

You can—and should—always ensure that it works before committing and pushing to
GitHub. To do so, you need to build a Docker image from your Dockerfile:

docker build -t data-test .

Make sure you notice the dot at the end of the line, which means that Docker should look
for a Dockerfile in the current directory. Docker will try to build an image from the
instructions in our Dockerfile. It should be pretty fast, since it’s a small base image and
there’s nothing but a couple of VOLUME instructions on top of it.

The screenshot is as follows:

-] oskarhane — ec2-user@ip-172-31-32-58:~/my-docker-images — ssh — 98x31

[ec2-user@ip-172-31-32-58 my-docker-images]$ docker build -t data-test .
Sending build context to Docker daemon 66.56 kB

Sending build context to Docker daemon

Step @ : FROM busybox:latest

busybox:latest: The image you are pulling has been verified

df 7546F9f@60: Pull complete
e433ab6chb276: Pull complete
e72achbdf4f@: Pull complete
511136ea3cha: Already exists
Status: Downloaded newer image for busybox:latest
-==> @72achb4f4fa
Step 1 : MAINTAINER Oskar Hane <oh@oskarhane.com>
===>» Running in GeSead@7fede
===> d2adeech26f3
Removing intermediate container GeBead9@7fede
Step 2 : RUN mkdir /mysql_data 8& mkdir /www_data
-=-=> Running in a315fcd38b5d
-==> fRh@B557876a
Removing intermediate container a315fcd3Bb5sd
Step 3 : VOLUME mysql_data www_data
===> Running in 9cB7f4al1891f
===> bSeldd4f268b3
Removing intermediate container 9cB7f4al891f
Successfully built bSe344f268b3
[ec2-user@ip-172-31-32-58 my-docker-images]$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
data-test latest b5e344f268b3 9 seconds ago 2.433 MB
oskarhane/hello latest 26c2a2935d3f 3 weeks ago 192.7 MB
busybox latest e72achhdf4f@ & weeks ago 2.433 MB
[ec2-user@ip-172-31-32-58 my-docker-images]$ I

When everything works as we want, it’s time to commit the changes and push it to our
GitHub repository:

git commit -m "Dockerfile for data volume added."
git push origin data

When you have pushed it to the repository, head over to GitHub to verify that your new
branch is present there.

The following screenshot shows the GitHub repository:

O This repository Search Explore Gist Blog Help ulurhnrlu +- O & p

oskarhane / my-docker-images @uUnwatch~ 1 #sStar 0 YFork 0
Yours Active Stale All branches Search branches

©

Default branch 5

master Updated 27 minutes ago by oskarhane m .

Your branches

data Updated 10 minutes ago by EC2 Default U 0|1 ' New pull request [l "
Active branches tal
data |Jpdated 10 minutes ago by EC2 Default 0|1 11 New pull request ag

N

® 2014 GitHub, Inc. Terms Privacy Security Contact Status APl Training Shop Blog About

Publishing on the Docker Registry Hub

Now that we have our new branch on GitHub, we can go to the Docker Hub Registry and
create a new automated build, named data. It will have our GitHub data branch as source.

Namespace (optional) and Repository Name
oskarhane ~ [/ data v

New unigue Repo name; 3 - 30 characters. Only lowercase letters, digits and _ - . characters are allowed

Tags
Type Name Dockerfile Location Docker Tag Name
Branch v data ! latest

Wait for the build to finish, and then try to pull the image with your Docker daemon to
verify that it’s there and it’s working.

The screenshot will be as follows:

® 09 oskarhane — ecZ-user@ip-172-31-32-58:~/my-docker-images — ssh — 93x17

[ec?2-user@ip-172-31-32-58 my-docker-images]$ docker pull oskarhane/data

Pulling repository oskarhane/data

2a18c3872c3c: Download complete

511136ea3cha: Download complete

df 7546F9f@60: Download complete

2433abchb276: Download complete

e72achbb4f4f@: Download complete

24946a@61c77: Download complete

68e6271343fd: Download complete

Status: Downloaded newer image for oskarhane/data:latest

[ec2-user@ip-172-31-32-58 my-docker-images]$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
oskarhane/data latest @al8c3B72cic 18 minutes ago 2.433 MB
mysqgl latest 6@1884ab1542 & days ago 235.5 MB
wordpress latest 260449F2dF90 3 waeeks ago 196.5 MB
oskarhane/hello latest 26c2a2935d3f 3 waeeks ago 192.7 MB
[ec2-user@ip-172-31-32-58 my-docker-images]$

Amazing! Check out the size of the image; it’s just less than 2.5 MB. This is perfect since
we just want to store data in it. A container on top of this image can, of course, be as big
as your hard drive allows. This is just to show how big the image is. The image is read-
only, remember?

Running a data volume container

Data volume containers are special; they can be stopped and still fulfill their purpose.
Personally, I like to see all containers in use when executing docker ps command, since I
like to delete stopped containers once in a while.

This is totally up to you. If you’re okay with keeping the container stopped, you can start
it using this command:

docker run -d oskarhane/data true

The true argument is just there to enter a valid command, and the -d argument places the
container in detached mode, running in the background.

If you want to keep the container running, you need to place a service in the foreground,
like this:

docker run -d oskarhane/data tail -f /dev/null

The output of the preceding command is as follows:

W @ oskarhane — ec2-user@ip-172-31-32-58:~/case — ssh — 154x22

[ec2-user@ip-172-31-32-58 casel$ docker run -d oskarhane/data true

140545daed6B861ab784dc31d@352bed ffecfI6d72cdal9cTaaBle475a26a5b094

[ec2-user@ip-172-31-32-58 casel$

[ec2-user@ip-172-31-32-58 casel$

[ec2-user@ip-172-31-32-58 casel$

[ec2-user@ip-172-31-32-58 casel]$ docker run -d oskarhane/data tail -f /dev/null

5c7e8317F13d1cb4472009d0b817bd456493681 c8c4aBedbd19ab56091dbaTed

[ec2-user@ip-172-31-32-58 case]l$

[ec2-user@ip-172-31-32-58 casel$

[ec2-user@ip=172-31-32-58 casel$

[ec2-user@ip-172-31-32-58 casel$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
Sc7eB317F13d oskarhane/data: latest "tail =-f /dev/mull® 11 seconds ago Up 1@ seconds prickly_wilson
[ec2-user@ip-172-31-32-58 casel$

[ec2-user@ip-172-31-32-58 case]$

[ec2-user@ip-172-31-32-58 casel$

[ec2-user@ip-172-31-32-58 casel$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
Sc7e8317f13d oskarhane/data: latest “tail -f /dev/null® 16 seconds ago Up 15 seconds prickly_wilson
14@545daed6s oskarhane/data: latest "trua” 29 seconds ago Exited (@) 28 seconds ago naughty_euclid
[ec2-user@ip-172-31-32-58 casel$ [|

The tail -f /dev/null command is a command that never ends, so the container will be
running until we stop it. Resource-wise, the tail command is pretty harmless.

Passing parameters to containers

We have seen how to give containers parameters or environment variables when starting
the official MySQL container:

docker run --name mysqgl-one -e MYSQL_ROOT_PASSWORD=pw -d mysql

The -e MYSQL_ROOT_PASSWORD=pw command is an example showing how you can do it. It
means that the MYSQL_ROOT_PASSWORD environment variable inside the container has pw as
the value.

This is a very convenient way to have configurable containers where you can have a setup
script as ENTRYPOINT or a foreground script configuring passwords; hosts; test, staging, or
production environments; and other settings that the container needs.

Creating a parameterized image

Just to get the hang of this feature, which is very good, let’s create a small Docker image
that converts a string to uppercase or lowercase, depending on the state of an environment
variable.

The Docker image will be based on the latest Debian distribution and will have only an
ENTRYPOINT command. This is the Dockerfile:

FROM debian:latest

ADD ./case.sh /root/case.sh
RUN chmod +x /root/case.sh
ENTRYPOINT /root/case.sh

This takes the case. sh file from our current directory, adds it to the container, makes it
executable, and assigns it as ENTRYPOINT.

The case. sh file may look something like this:

#!/bin/bash

if [-z "$STR"]; then
echo "No STR string specified."
exit O

fi

if [-z "$TO_CASE"]; then
echo "No TO_CASE specified."

exit 0

fi

if ["$TO_CASE" = "upper"]; then
echo "${STRAA*}"
exit 0

fi

if ["$TO_CASE" = "lower"]; then
echo "${STR,,6 *}"
exit 0

fi

echo "TO_CASE was not upper or lower"

This file checks whether the $STR and $T0_CASE environment variables are set. If the
check on whether $T0_CASE is upper or lower is done and if that fails, an error message
saying that we only handle upper and lower is displayed.

If $T0_STR was set to upper or lower, the content of the environment variable $STR is
transformed to uppercase or lowercase respectively, and then printed to stdout.

Let’s try this!

) @ oskarhane — ec2-user@ip-172-31-32-58:~/case — ssh — 89x26

[ec2-user@ip-172-31-32-58 casel]% docker build -t case:latest .
Sending build context to Docker daemon 3.584 kB
Sending build context to Docker daemon
Step @ : FROM debian:latest
=-==> fhfabib79Ebe
Step 1 : ADD ./case.sh /root/case.sh
--=> Using cache
===> dci7401a78bf
Step 2 : RUN chmod +x /root/case.sh
-=-=> Using cache
-==> 4c300F47960d
Step 3 : ENTRYPOINT froot/case.sh
--=> Using cache
-==> 142e861d5173
Successfully built 142e961d5173
[ec2-user@ip-172-31-32-58 case]% docker i case
No STR string specified.
[ec2-user@ip-172-31-32-58 casel]% docker i STR="My String" case
No TO_CASE specified.
[ec2-user@ip-172-31-32-58 case]% docker i STR="My String" -e TO_CASE=camel case
TO_CASE was not upper or lower
[ec2-user@ip-172-31-32-58 case]% docker i STR="My String" -e TO_CASE=upper case
MY STRING
[ec2-user@ip-172-31-32-58 casel]% docker i STR="My String" -e TO_CASE=lower case
my string
[ec2-user@ip-172-31-32-58 casel$ I

Here are some commands we can try:

docker run -i case

docker run -i -e STR="My String" case

docker run -i -e STR="My String" -e TO_CASE=camel case
docker run -i -e STR="My String" -e TO_CASE=upper case
docker run -i -e STR="My String" -e TO_CASE=lower case

This seems to be working as expected, at least for this purpose. Now we have created a
container that takes parameters and acts upon them.

Summary

In this chapter, you learned that you can keep your data out of your service containers
using data volumes. Data volumes can be any one of directories, files from the host’s

filesystem, or data volume containers.

We explored how we can pass parameters to containers and how to read them from inside
ENTRYPOINT. Parameters are a great way to configure containers, making it easier to create
more generalized Docker images.

We created a data volume container and published it to the Docker Registry Hub,
preparing us for the next chapter, where we will connect our three containers to create one

loosely coupled unit.

Chapter 5. Connecting Containers

It’s time to connect all our three containers to form a single unit of modularized parts. I’ll
introduce you to two services, Docker Compose and Crane, which can be used to
automate this. We’ll go through the following topics in this chapter:

Manually connecting containers together

Exploring the contents of a data volume container

Connecting containers to a configuration file using Docker Compose
Connecting containers to a configuration file using Crane

Manually connecting containers

Let’s take a look at how to connect our service containers to our data volume container.
First, we have to run our data volume container, then run our MySQL container, and lastly
run our WordPress container, as shown in the following command:

docker run -d --name data-one oskarhane/data tail -f /dev/null
docker run --name mysqgl-one --volumes-from data-one -e
MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql

docker run --name wordpress-one --volumes-from data-one --link mysql-
one:mysql -d -p 80 oskarhane/wordpress

Here, we have fired up and named the data volume container data-one. The next line fires
up the MySQL container, named mysql-one, and gives it the data volume container. The
last line fires up our WordPress container, named wordpress-one, links mysql-one as the
MySQL link, and gives it the data volume container.

The following output is displayed:

. ® oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 150x21

[ec2-user@ip-172-31-32-58 ~]% docker run -d --name data-one oskarhane/data tail -f /dev/null
abc94cbd6bf58bb388@FccifcTbifa2863aTedde58c321620e671e8dFB3c0Be

[ec2-user@ip-172-31-32-58 ~]% docker run --name mysql-one --volumes-from data-one -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysgl
8792609cbc9fbfe2b4105376df4c5b52Ff0F857a53602ba56d4187b424F052d9

[ec2-user@ip=172-31-32-58 ~]$ docker run =-name wordpress-one =--volumes-from data-one =-link mysgl-one:mysql -d =-p 88 oskarhane/wordpress
95630d9b3d33%e8db42d25F293498eeb28b98c62960092333d881cbalb277916

[ec2-user@ip-172-31-32-58 ~]¢% docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAME S
95638d9b3d33 oskarhane/wordpress:latest “/entrypoint.sh apac 7 seconds ago Up 6 seconds 9.0.0.0:49161->80/tcp wordpress-one

87926@9chbcf mysql: latest "fentrypoint,sh mysq About a minute ago Up About a minute 3306/tcp mysql-one
abc94cbdbbfs oskarhane/data: latest "tail -f /dev/null"” 3 minutes ago Up 3 minutes data-one

[ec2-user@ip-172-31-32-58 ~1%

Open your web browser and head over to the container’s URL and port in order to verify
that all the services are running and the containers are tied together as they should be. You
should see the, now familiar, WordPress installation page.

As you may have figured out by now, you can fire up another WordPress container using
the same MySQL link and the same data volume container. What do you think will
happen?

The new WordPress container will be another instance of the same WordPress site, with
the same files and the same database.

When you link containers, Docker will set some environment variables in the target
container in order to enable you to get information about the linked source container. In
our case, these environment variables will be set when we link the MySQL container, as
shown in the following command:

MYSQL_NAME=/wordpress-one/mysql-one
MYSQL_PORT=tcp://ip:3306

MYSQL_3306_TCP=tcp://ip:3306
MYSQL_3306_TCP_PROTO=tcp
MYSQL_3306_TCP_PORT=3306
MYSQL_3306_TCP_ADDR=ip

Exploring the contents of a data volume
container

Is the data being written to the data volume container? Or, is the data stored inside the
MySQL and WordPress containers when connected? How can you tell?

One way to determine this is to enter a container via a shell so that you can navigate
around its filesystem. Since version 1.3, Docker has the ability to start a new instance of a
container’s shell. Running the old docker attach command just gets you in the current
shell instance, which in our case has tail -f /dev/null running. If we exit this tail
command, the container will exit and shut down. Therefore, we need a new shell instance
in a running container so that we can invoke any commands we want inside the container
without the risk of the container exiting. The following command can be used to do this:

docker exec -i -t data-one /bin/sh

The -i and -t flags mean that we want to keep the session interactive and allocate a
pseudo-TTY. data-one is the name of the container, but you can use the container ID if
you like. I would choose /bin/bash over /bin/sh, but the container runs BusyBox and
/bin/bash isn’t available there. For the kinds of tasks that we are about to perform, it
doesn’t matter which shell we use.

What we want to do is to take a look in the directories we exposed as VOLUMES in this data
volume container. The directories are /var/www/html and /var/1ib/mysql.

Let’s explore in the following command:

1s -1la /var/www/html
1s -la /var/lib/mysql

The following output is displayed:

) & oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 98x4d4

[ec2-user@ip-172-31-32-58 ~]% docker exec -i -t data-one /bin/sh
/ # 1s =-la /var/www/html

total 1588
drwxr=xr-x
drwxr=xr-x
-rW=r==r==

www-data 4096

www-data 4096

www-data 163 .htaccess

www-data 418 index.php

www-data 19493@ license. txt

www-data 7192 readme . html

www-data i79e37 two-factor-auth.4.4.zip
www-data 4951 wp-activate.php
www-data 4096

www-data 21 wp-blog-header.php
www-data 4946 wp-comments-post.php
www-data 2746 wp-config-sample.php
www-data 3147 wp-config.php

www-data 4006

www-data 2956 wp-cron, php

www-data 4096

www-data 2380 wp-links-opml.php
www-data 2714 : wp-load.php

www-data 33043 : wp-login.php

www-data 138096 ! wp-mail-smtp.@.9.5.zip
www-data B252 : wp-mail.php

www-data 11115 : wp-sattings.php
www-data 26256 : wp-signup.php

www-data 905473 : wp-super-cache.1.4.2. zip
www-data 4026 wp-trackback.php
=FW=F==F== 1 www-data 3e32 xmlrpe. php

/ # 1ls =-la fvar/lib/mysql

total 118620
drwxr=xr-x
drwxrwxr-x
=FW=FW==—=

-FW-r--r--
-FW-r--r--
-FW-r--r--
-FW-r--r--
-FW-r--r--
drwxr-xr-x
-FW-r--r--
-FW-r--r--
-FW-r--r--
-FW-r--r--
drwxr-xr-x
-FW-r--r--
drwxr-xr-x
-FW-r--r--
-FW-r--r--
-FW-r--r--
-FW-r--r--
-FW-r--r--
-FW-r--r--
-FW-r--r--
-FW-r--r--

T T Y UM A S A i S i S P O 1, |

—PW=F==f=-

999

root

a99 2 : B7926009chcOf . pid
099 1] : auto.cnf

099 50331648 : ib_logfiled@

099 50331648 : ib_logfilel

099 12582912 : ibdatal

099 4096

299 4096

299 4096

-rW-rw----
-rW-rw----
-rW-rw----
-rW-rw----

B BRI BRI = =3 = = = N

We see files on both those directories, which indicates that the two other containers are
writing to this one. It separates the services with the data. If you want further proof, launch
vi in the shell, edit a file, and reload the site in your browser.

This worked out really smooth and easy, didn’t it? The containers interact with each other
and all we have to do is to link them together with just one command.

Connecting containers using Docker
Compose

Docker Compose was previously called Fig, but Docker acquired Fig and the name was
changed. This is how Docker describes Docker Compose:

“Compose is a tool for defining and running complex applications with Docker. With
Compose, you define a multi-container application in a single file, then spin your
application up in a single command which does everything that needs to be done to
get it running.”

Docker Compose basically gives us a way to define settings in a configuration file, so we
don’t have to remember all the names for all the containers when linking them together,
the ports to expose, the data volume container to use, and so on.

Installing Docker Compose

Docker Compose has regular releases on GitHub, and at the time of writing this book, the
latest release is 1.0.1.

We will install Docker Compose with the Python package manager, pip. Our EC2 instance
does not come with pip installed, so we have to start with the installation, as shown here:

sudo su
wget https://bootstrap.pypa.io/get-pip.py && python ./get-pip.py

The following output is displayed:

iw @ oskarhane — root@ip-172-31-32-58:/home/ec2-user — ssh — 97x20

[root@ip-172-31-32-58 ec2-user]# wget https://bootstrap.pypa.io/get-pip.py && python ./get-pip.py
converted "https://bootstrap.pypa.io/get-pip.py’' (ANSI_X3.4-1968) -> 'https://bootstrap.pypa.iofg
et-pip.py"' (UTF-8)

-=2014-12-02 21:089:34-- https://bootstrap.pypa.io/get-pip.py

Resolving bootstrap.pypa.io (bootstrap.pypa.io)... 199.27.79.175

Connecting to bootstrap.pypa.io (bootstrap.pypa.io)|199.27.79.175]|:443... connected,

HTTP request sent, awaiting response... 280 0K

Length: 134@9@3 (1.3M) [text/x-python]

Saving to: 'get-pip.py.2’'

get-pip.py.2 1.28M 3.49MB/s in @.4s

2014-12-082 21:09:34 (3.49 MB/s) - 'get-pip.py.2' saved [1340903/1340903]

Requirement already up-to-date: pip in fusr/lib/python2.6/site-packages
Cleaning up...

[root@ip-172-31-32-58 ec2-user]# pip -V

pip 1.5.6 from fusr/lib/python2.6/site-packages (python 2.8)
[root@ip-172-31-32-58 ec2-user]# I

After pip is installed, you can go ahead and install Docker Compose:

sudo pip install -U docker-compose

Now, you’ll see Docker Compose installed along with all of its dependencies. Invoke
docker-compose --version to verify that it works as expected.

Basic Docker Compose commands

The following are the basic Docker Compose commands that you should be familiar with:

build: This is used to build or rebuild services

kill: This forces the service containers to stop

logs: This views the output from the services

port: This is used to print the public port for a port binding

ps: This is used to list containers

pull: This is used to pull service images

rm:; This is used to remove stopped service containers

run: This is used to run a one-off command on a service

scale: This sets the number of containers to be run for a service
start: This is used to start existing containers for a service
stop: This stops running containers without removing them

up: This builds, recreates, starts, and attaches to containers for a service; linked
containers will be started, unless they are already running

As you can see, the commands are very similar to the Docker client commands and most
of them do the exact same thing by forwarding the commands to the Docker daemon. We
will go through some of them a little more in detail.

Service

When the word service is used with Docker Compose, it refers to a named container in a
docker -compose.yml configuration file.

Using the run command

We are used to starting containers with the run command for the Docker client. With
docker-compose, the run command is very different. When you run a command with
docker-compose, it’s a one-off command on a service. This means that if we name a
container configuration Ubuntu and invoke docker-compose run ubuntu /bin/bash
echo hello, the container will start and execute /bin/bash echo hello and then shut
down. The difference with this and running the command directly with Docker is that all
the linked containers and VOLUME containers will be started and connected when you use
docker-compose.

Using the scale command

The scale command is very interesting. When we invoke docker-compose scale web=3,
we actually start three containers of the service that we named web.

Setting up our PaaS with Docker Compose

Every Docker Compose instance lives in its own directory and has a configuration file
named docker-compose.yml inside it:

mkdir docker-compose-wp && cd $_
touch docker-compose.yml

This is how the contents of our docker -compose.yml file will look:

wp:
image: oskarhane/wordpress
links:
- mysql:mysql
ports:
"80 n
volumes_from:
- paasdata
mysql:
image: mysql
volumes_from:
- paasdata
environment:
- MYSQL_ROOT_PASSWORD=myrootpass
paasdata:
image: oskarhane/data
command: tail -f /dev/null

You can see that we have defined three services here, namely wp, mysql, and paasdata.

Lets try these services and the following output is displayed:

® oskarhane — ec2-user@ip-172-31-32-58:~/docker-compose-wp — ssh — 92x12

[ec2-user@ip-172-31-32-58 docker-compose-wpl% docker-compose up -d
Recreating dockercomposewp_paasdata_1...

Recreating dockercomposewp_mysql_1...

Recreating dockercomposewp_wp_1...

[ec2-user@ip-172-31-32-58 docker-compose-wpl$ docker-compose ps

dockercomposewp_mysqgl_1 fentrypoint.sh mysqld --da ... 3386/ tecp
dockercomposewp_paasdata_1 tail -f /dev/null

dockercomposewp_wp_1 fentrypoint.sh apache2 -DF ... 2.0.0.0:49155->8@/tcp
[ec2-user@ip-172-31-32-58 docker-compose-wpl$%

[ec2-user@ip-172-31-32-58 docker-compose-wpl$% I

Invoke docker-compose up -d to run docker -compose and the containers in daemon
mode.

That’s how easy it is. Open your web browser and head to your Docker host and the port
stated in the table (in my case, port 49155); you should see the very familiar WordPress
installation page.

Connecting containers using Crane

Crane is much like Docker Compose, but it has more configuration possibilities. This is
how its creator describes Crane:

“Crane is a tool to orchestrate Docker containers. It works by reading in some
configuration (JSON or YAML) which describes how to obtain images and how to
run containers. This simplifies setting up a development environment a lot as you
don’t have to bring up every container manually, remembering all the arguments you
need to pass. By storing the configuration next to the data and the app(s) in a
repository, you can easily share the whole environment.”

This paragraph can be about Docker Compose as well, as you can see.

Installing Crane

Crane is easy to install but not easy to keep updated. The same command is used to install
as well as update, so we have to invoke this once in a while in order to have the latest
version.

Invoke the following command on a single line to install Crane:

bash -c¢ "“curl -sL
https://raw.githubusercontent.com/michaelsauter/crane/master/download.sh™"
&& sudo mv crane /usr/local/bin/crane

Crane is now installed in /usr/local/bin.

Usage

I won’t go through all the commands here since they’re similar to Docker Compose’s
commands, but I’ll comment on a few here:

e 1lift: This command, like Docker Compose’s up command, builds and runs
containers from your configuration file

e graph: This prints your containers’ relations from the configuration file

e logs: This maps to the Dockers Compose’s command, but here you can get the logs
for a whole group

e status: This also maps to the Dockers Compose’s command but lets you get the logs
for a group

Configuration

This is where Crane really leaves Docker Compose behind. You have many more
configuration options for Crane apps. The configuration file must be named crane. json
or crane.yaml. For every container, this is what you can configure:

image (string, required): This is the name of the image to build/pull

dockerfile (string, optional): This gives the relative path to the Dockerfile

run (object, optional): These parameters are mapped to Docker’s run and create
commands:

0O 0 0O o o O o o o 0o 0o 0O OO OO O O o o o o o

add-host (array): This adds custom host-to-IP mappings

cpuset (integer)

cpu-shares (integer)

detach (boolean) sudo docker attach <container name> will work as normal
device (array): This adds host devices

dns (array)

entrypoint (string)

env (array)

expose (array): This denotes the ports to be exposed to linked containers
hostname (string)

interactive (boolean)

link (array): This links containers

memory (string)

privileged (boolean)

publish (array): This maps network ports to the container

publish-all (boolean)

restart (string) Restart policy

rm (boolean)

tty (boolean)

volume (array): In contrast to plain Docker, the host path can be relative
volumes-from (array): This is used to mount volumes from other containers
workdir (string)

cmd (array/string): This command is used to append to docker run (overwriting
CMD)

e rm (object, optional): These parameters are mapped to Docker’s rm command:

e}

volumes (boolean)

e start (object, optional): These parameters are mapped to Docker’s start
command:

e}

e}

attach (boolean)
interactive (boolean)

Set up the same configuration that you did in Docker Compose; it will look something like
the following code. As you might understand, you can write this in the JSON format as

well, but for the comparison to Docker Compose’s version to be as easy as possible, I’ll
keep it in the yaml format:

containers:
wp:
image: oskarhane/wordpress
run:
volumes-from: ["mydata"]
link:

- mymysql:mysql
publish: ["80"]
detach: true
mymysql:
image: mysql
run:
volumes-from: ["mydata"]
detach: true
env: ["MYSQL_ROOT_PASSWORD=rootpass"]
mydata:
image: oskarhane/data
run:
detach: true
cmd: "tail -f /dev/null"

Here, we specify three containers, where the data container is added as a data volume
container to the others and the MySQL container is linked to the WordPress container.

Save this file as crane.yaml and type crane 1ift to run your app.

The following output is displayed:

- oskarhane — ec2-user@ip-172-31-32-68:~/crane-wp — ssh — 105x11

[ec2-user@ip-172-31-32-58 crane-wpl$ crana lift

Running container mydata ... 159e@c5b63bc52bedd93aBaf625df77186ea43538867d8d0bF587cT7efdelbecBe

Running container mymysgl ... 9919f@467d1ccl@1f2adfc569b6becBB54616e61a71593560762182480855eb113b

Running container wp ... 0369e142a23b7e69729f3330Ba7f977f3Bbc6a56d0f689a6b636754e7a081424
[ec2-user@ip-172-31-32-58 crane-wpl% crane status

NAME IMAGE ID UP TO DATE IP PORTS RUNNING

mydata oskarhane/data 159e@c5b63be true 172.17.0.161 - true
mymysql mysql 9919f@467d1c true 172.17.0.162 33e6/tcp, true
wp oskarhane/wordpress 0369%9e142a23b true - - false
[ec2-user@ip-172-31-32-58 crane-wpl$

To see the containers’ current statuses, we can type crane status. Take a look at the last
column in our wp container. It says it’s not running. Type crane logs wp and see what it
says in following command:

wp * WordPress not found in /var/www/html - copying now..

wp * Complete! WordPress has been successfully copied to /var/www/html
wp |

wp | Warning: mysqli::mysqli(): (HY000/2002): Connection refused in - on
line 5

wp * MySQL Connection Error: (2002) Connection refused

It seems that our WordPress container starts faster than our MySQL container, so the
WordPress container can’t find it when it starts.

This can happen in Docker Compose as well because there’s no check if --1ink:ed
containers are up, at least not at the time when this is being written.

This cannot be solved in Docker Compose; we have to rely on pure luck that the MySQL
container will get ready before the WordPress container tries to use the linked MySQL
container.

With Crane, you can group containers inside the configuration file in different groups and
then run commands on that group instead of the whole configuration.

This is very easy; we just add these lines at the end of our crane.yaml file:

groups:
default: ['mydata', 'mymysql', 'wp']
data_db: ['mydata', 'mymysql']
web: ['wp']
Here, we have separated the WordPress container from the other two containers we have
so that we can run commands on them separately.

Let’s start our data_db group first by invoking the crane 1ift data_db --recreate
command. I added the flag - -recreate and to make sure that we’re creating new
containers and not reusing the old ones. Run crane status data_db to make sure they’re
running.

Now that we know that the MySQL container is running, we can start the WordPress
container by invoking the crane 1ift web --recreate command.

The following output is displayed:

L) @ oskarhane — ec2-user@ip-172-31-32-58:~/crane-wp — ssh — 104x10

[ec2-user@ip=-172-31-32-58 crane-wpl$% crane lift web

Running container wp ... B7c5f51e32087b7bb4ebaafdab6278509934157e47dd@8edc7@abbebebfa21 580
[ec2-user@ip=-172-31-32-58 crane-wpl$%

[ec2-user@ip-172-31-32-58 crane-wpl$%

[ec2-user@ip=-172-31-32-58 crane-wpl$% crane status

NAME IMAGE 1D UP TO DATE IP PORTS RUNNING
mydata oskarhane/data e@9369d66fF6ae true 172.17.0.18@ - true
mymysgl mysql c@21b681b866 true 172.17.8.181 33@6/tcp, true

wp oskarhane/wordpress 87c5f51e3208 true 172.17.8.182 ge/tep, true
[ec2-user@ip-172-31-32-58 crane-wpl$%

Summary

Now, we can connect containers in different ways to keep different services separate on
different containers. We learned how to do this manually, which can be quite hard when
you have lots of dependencies between containers.

We had a brief look at two orchestration tools: Docker Compose and Crane. Crane is an
independent and more advanced tool for the administrators who want more control over
containers. The ability to group containers in Crane makes it more reliable when there can
be timing issues in dependencies.

In the next chapter, we will run two instances of our app using Crane to see what problems
and possibilities crop up when we want to make both our blogs publicly accessible on the
regular HTTP port (80).

Chapter 6. Reverse Proxy Requests

One big problem in having many containers with public ports on the same server is that

they can’t all listen to the standard ports for their kinds of services. If we have a MySQL
backend service and have 10 MySQL containers running, only one of them can listen to

the MySQL standard port 3306. For those who expose a web server, the standard port 80
can only be used by one of their WordPress containers. In this chapter, we’ll cover the

following topics:

Explaining the problem
Coming up with a solution to the problem
Implementing the solution with Nginx and HAProxy

[
[
[
e Automating the process of mapping domains

Explaining the problem

The problem in having many containers with the same services on the same host is that
there are standard ports used by user applications. Using a web browser and entering the
IP to a Docker host running a WordPress container will ask for resources on port 80 by
default. You can’t expect your users to remember a nonstandard port in order to enter your
website.

Web Page Title DOCker hOSt
€>Ch _
Docker containers
. . i
http://domain1.com:49256 [
domaini.com
P: 80:49256
Web Page Title ~
e
€>2ChH
domainz.com
http://domain2.com:49257 AR
N
e
Web Page Title [~
€rCh e
. N
http://domain3.com

The only way to reach each of the three containers is to manually enter the containers’
exposed port number.

Finding a solution

Before we head to the solution, let me explain what a regular proxy server is, in case
you’re not familiar with it.

A proxy server is a server that connects to services on your behalf and forwards all the
results to you. After you’ve set up to route all your traffic through the proxy server, you—
as a user—won’t notice it’s there. Everything will work as usual.

However, service owners only see that a certain machine (the proxy server) is connected
to them. If another user uses the same proxy server and the same service as you do, the
service owner can’t tell the difference and will perceive you as one single user.

Youtube

Different users connecting through a proxy server appear as one user.

As you can see in the preceding diagram, the service owners just see that someone with an
IP of 213.12.12.3 has connected to them.

So, what if we use this on the Docker host? What if we put something in front of all the
containers? Depending on which domain name is being requested, this thing will forward
the request to the right container and port and then just forward the request’s response to
the requesting user.

There are things especially made to solve this kind of problem. They’re called reverse
proxies (reverse because the proxy is at the other end, making the user only see one IP and

forwarding the request).

If we install and configure a reverse proxy on our Docker host server, then this is how the
diagram will look:

Web Page Title DOCker host
€52Ch)
Docker containers
http://domain1.com ——
domain1.com
P: B0:49256
Web Page Title ~—
€ 2Ch il .
Reverse
domain2.com
. . 7 roxy P: 80:49257
http://domain.2.com P
P P: 80
\-.___________../
— N
! = R
€s>Ch -y
\-.___________..-/
http://domain3.com

A reverse proxy lets all Docker containers appear as one.

The reverse proxy listens to port 80—the standard web port—and when a request for
domaini.com comes in, the proxy looks at its configuration to see whether there is a
specified forwarding endpoint for this domain. If there is, the reverse proxy forwards the
request to the right Docker container, waits for its response, and forwards the container’s
response to the requesting users when it comes.

This is the solution we’re after. The only question now is which reverse proxy we are
going to use. There are quite a bunch of them out there; some reverse proxies have more
specific purposes, such as load balancing, and some are services that do a lot of other stuff
and have this feature as well, such as a web server.

Implementing the solution

You will always have preferences when selecting a tool to solve a problem. Sometimes,
you select a tool because you’re comfortable using it and it’s good enough; sometimes,
you select it because it has great performance or because you just want to try something
new.

That’s why we will go through this problem and solve it with two different tools. The end
result will be the same, but the tools have a slightly different setup.

Before we start implementing the solutions, we use Crane to start an instance of our three-
container application and verify that it’s working by connecting it to the site. Have Docker
decide the public port for you, so it’s 491xX. Remember this port since we will use it when
implementing the solutions.

We need to point out the domain names we want to use to our Docker host’s IP address.
We can do this either by setting the domain names A-record to our server’s IP address or
by adding a line in our local /etc/hosts file, which directs requests to the domain names
to our server’s IP address.

I’1l go with the latter and enter this in my Mac’s /etc/hosts file:

54.148.253.187 domainl.com
54.148.253.187 domain2.com
54.148.253.187 domain3.com

Note

Make sure you replace the above IP address with your server’s IP address.

Implementation with HAProxy

HAProxy (http://www.haproxy.org) is a load balancer, which has the role of forwarding
traffic to different services behind it.

This is how HAProxy describe themselves:

“HAProxy is a free, very fast and reliable solution offering high availability, load
balancing, and proxying for TCP and HTTP-based applications. It is particularly
suited for very high traffic web sites and powers quite a number of the world’s most
visited ones. Over the years it has become the de-facto standard open source load
balancer, is now shipped with most mainstream Linux distributions, and is often
deployed by default in cloud platforms.”

This sounds like something that fits our needs.

Installing HAProxy

As noted in the quote, many systems are installed already and shipped with it. If you can’t
find it, it should be available in you package manager if you use Ubuntu or Debian (apt -
get install haproxy) or in some other distro with a package manager.

On my Amazon EC2 instance that runs Amazon Linux, HAProxy can be installed using
yum install haproxy.

The following output will be obtained as follows:

http://www.haproxy.org

" [] oskarhane — root@ip-172-31-32-5B:/home/ec2-user — ssh — 117x43

[root@ip-172-31-32-58 ec2-user]# yum install haproxy

Failed to set locale, defaulting to C

Loaded plugins: priorities, update-motd, upgrade-helper
amzn-main/latest

amzn-updates/latest

Resolving Dependencies

==> Running transaction check

=-=-=> Package haproxy.xB6_64 @:1.4,.22-5.3.amzn1 will be installed
==> Finished Dependency Resolution

Dependencies Resolved

Package

Installing:
haproxy

Transaction Summary
Install 1 Package

Total download size: 512 k
Installed size: 1.4 M
Is this ok [y/d/N]: y
Downloading packages:
haproxy=-1.4.22-5.3.amzn1. x86_64 . rpm | 512 kB
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : haproxy-1.4.22-5.3.amznl1.xB86_64
Verifying : haproxy-1.4.22-5.3.amznl.x86_64

Installed:
haproxy.xB6_64 @:1.4.22-5.3. amzn1

Completel

[root@ip-172-31-32-58 ec2-user]# haproxy -v
HA-Proxy version 1.4,22 2012/08/09

Copyright 2000-2012 Willy Tarreau <w@lwt.eu>

[root@ip-172-31-32-58 ec2-user]# I

It’s not the most recent version, but that’s OK for the things we are about to do.

Configuring HAProxy

We’ll write an HAProxy configuration in the file /etc/haproxy/docker.cfg so that we
don’t have to remove everything in the default configuration file, as it may be good for
reference in the future.

HAProxy divides its configuration into four parts: global, defaults, frontend, and backend.
Don’t confuse frontend and backend with frontend and backend development. Here,
frontend means the server part that’s facing the Internet, and backend is the server part
that’s behind HAProxy, which in our case are the Docker containers.

Open the configuration file and start by typing in the generic stuff, as shown here:

global
daemon
maxconn 4096
pidfile /var/run/haproxy.pid

defaults
mode http
timeout connect 5000ms
timeout client 50000ms
timeout server 50000ms

Now, we enter the port to listen on and the backend configurations to use for which
domain:

frontend http-in
bind *:80
acl is_sitel hdr_end(host) -i domainl.com
use_backend sitel if is_sitel

We define that regular incoming HTTP traffic on port 86 should be captured. The acl here
means access control list and is a flexible solution to take decisions based on content
extracted from the requests. The hdr_end(host) -i domaini.com function call means
that the end of the header host is case-insensitive, matched against the string domaini.com.
The result (Boolean) of this match is saved in the is_site1 variable.

Note that this means that all the subdomains for domain1.com will be matched with this
setup. If you just want to match www.domaini.com, you can use hdr (host) -i
www . domaini.com instead.

Now that we have the match result in the is_site1 variable, we can send the request to a
backend configuration, named sitel.

We append this to our configuration file:

backend sitel
balance roundrobin
option httpclose
option forwardfor
server sl1 127.0.0.1:49187 maxconn 450

We define our backend name as sitel, set a few options, and add the server and the port
to our WordPress container.

Note

Make sure you enter your WordPress container’s exposed port instead of 49187 in the
preceding code.

It’s time to try this configuration. Save the configuration file and test it in a shell with this
command:

haproxy -f /etc/haproxy/docker.cfg -c
The output should say configuration file is valid.

Make sure you don’t have something already listening to port 80 on your machine. You
can use something such as netstat -a to verify that 80 or HTTP isn’t listed. If they are,
find the app that’s listening and shut it down.

Start HAProxy with this command:

haproxy -f /etc/haproxy/docker.cfg -D

The -D option means that we want to run it as a daemon in the background. You shouldn’t
see any output when you invoke this command.

Let’s check whether HAProxy is running by invoking ps aux | grep haproxy. You
should see it listed there. Finally, let’s verify that it is listening to port 80 by invoking
netstat -a | grep http. Now, you should have something in that list.

The output obtained is displayed here:

= oskarhane — root@ip-172-31-32-58./home/ec2-user/crane-wp — ssh — 103x9

[rect@ip-172-31-32-58 crane-wpl# haproxy -f fetc/haproxy/decker.cfg -D

[root@ip=-172-31-32-58 crane-wpl# ps aux | grep haproxy

root 21322 e@e.e ©.& 16852 956 7 Ss 20:57 0:00 haprexy -f fetc/haproxy/decker.cfg -D
root 21324 @.@ 9.2 110256 640 pts/e@ S+ 20:57 ©:00 grep haproxy

[root@ip=-172=-31-32-58 crane-wpl# netstat -a | grep http
tcp @ @ *:http *1k LISTEN
[root@ip=-172-31-32-58 crane-wpl#

It all looks good!

Just to recap what we have done here: we set up a service that listens for incoming
requests on port 80 on our server. When a request on this port comes in, a check on the
request header’s host is performed to see whether it matches domaini.com. If we have a
match, the request is forwarded to the IP address 127.0.0.1 and to the port 49187. The
response from this IP and port are sent back to the requester.

Now to the moment of truth. Open your web browser and enter the URL domaini.com.

Make sure that you have entries for domaini.com in your host’s file, pointing it to your
Server.

After you perform the preceding instructions, you will see the following website screen:

| ' WordPress » Installation X

L C [domaini.com/wp-admin/install.php Qs =

gl
Azarbaycan dili
Brnrapcku
Bosanski

Catala

Cymraeq

Dansk

Deutsch

English {Canada)
English {UK)
English {Australia)
Espafiol

Espafiol de Perd

Camadal dea Slaila

You can see that in the location bar, no port is specified. Wonderful!

Adding more domains to HAProxy

We did not go through all this just to serve a single web application on port 80, which can
be done without a reverse proxy. Start another WordPress application with Crane by
copying the old configuration to a new directory and change the service’s names, as shown
here:

cd..

Cp -r crane-wp crane-wp2

cd crane-wp2

sed -i "s/wp/wp2/g" crane.yaml

sed -i "s/mydata/mydata2/g" crane.yaml
sed -i "s/mymysql/mymysql2/g" crane.yaml
crane lift data_db

crane lift wp2

#check out port for new container named wp2
docker ps

Open the HAProxy configuration file again and add two lines in the frontend:

acl is_site2 hdr_end(host) -i domain2.com
use_backend site2 if is_site2

After that, add a new backend configuration named site2:

backend site2
balance roundrobin
option httpclose
option forwardfor
server s2 127.0.0.1:49188 maxconn 450

Make sure that you replace the port with the one you got. Restart HAProxy and do the
checks we did the last time we started it.

To restart HAProxy, run /etc/init.d/haproxy restart.

Note

HAProxy can reload a new configuration without dropping active sessions with this
command:

haproxy -f /etc/haproxy/docker.cfg -p /var/run/haproxy.pid -sf $(cat
/var/run/haproxy.pid)

Open your browser and go to domaini.com in order to make sure that the old one is
working. If it does, go to domain2.com. You should see another WordPress installation
site. Just to be sure that it’s not the same, go ahead and install one of them. Or, go to
domain3.com and see what happens when a domain points to the server without having it
match in HAProxy.

Implementation with Nginx

Now, we are going to do the same thing as we did with HAProxy, but we will use the
excellent web server Nginx (http://nginx.org/en/) as our reverse proxy instead. Nginx is a
full featured and really fast web server that leaves a small footprint in the memory.

This is how Nginx is described:

“nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy
server, written by Igor Sysoev. For a long time, it has been running on many heavily
loaded Russian sites including Yandex, Mail.Ru, VK, and Rambler. According to
Netcraft, nginx served or proxied 20.41% busiest sites in November 2014. Here are
some of the success stories: Netflix, Wordpress.com, FastMail. FM.”

This also sounds like what we need, just like it did with HAProxy.
Installing Nginx

Nginx is available in all Linux package managers, such as aptitude/apt, yum, and others,
so an install can be simply done with apt-get install nginx or yum install nginx.
Since it’s open source, you can, of course, install it from the source as well.

Configuring Nginx
We are going to add the configuration to a file named /etc/nginx/conf.d/wp1.conf.

Create and open this file in your favorite text editor:

server {
listen 80;
server_name domainl.com;
charset UTF-8;

if ($host !~ A(domainl.com)$) {
return 444;

¥
}
This block, as you can see, makes the server listen to port 80 and to match the domain
domaini.com for this configuration to apply. It’s always good to specify the server charset
so that the website text does not get the wrong encoding during the forwarding process;
so, we add that line as well. To just listen to domaini1.com and nothing else (Nginx uses the
first configuration found as a default configuration if there’s no match in the server name
part), we return the HTTP status code 444 (no response) on the other requests that get in
there.

What are we going to do with the requests on port 80 for domaini.com then?

Add this inside the server’s scope (curly brackets):

location / {
proxy_pass http://wpl;
proxy_set_header X-Real-IP $remote_addr;

http://nginx.org/en/

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-NginX-Proxy true;

proxy_set_header Host $host;

proxy_set_header X-Forwarded-Proto $scheme;

proxy_redirect off;

}

The location block will match all the requests since it matches /. We will get back to the
proxy_pass part in a while. Other than this, you’ll see that we set a lot of headers, most of
them telling our Docker container the requesters’ real IP address and so on.

Back to the proxy_pass part. This is the part that actually forwards the request, to
something named wp1. This is called an upstream, which we have to define.

Add this outside the server’s scope:

upstream wpl {
server 127.0.0.1:49187,;
}

The complete configuration file named /etc/nginx/conf.d/wpl.conf should look like
this now:

upstream wpl {
server 127.0.0.1:49187;

}

server {
listen 80;
server_name domainl.com;
charset UTF-8;

if ($host !~ A(domainl.com)$) {
return 444,
}

location / {
proxy_pass http://wpl;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-NginX-Proxy true;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_redirect off;

b
}

Save the file and on most Linux systems, you can test it for syntax errors using the
command sudo /etc/init.d/nginx configtest or sudo service nginx configtest.

Note

Make sure that you have shut down HAProxy before you start Nginx, or you will get an
error saying that Nginx can’t bind to port 86. You can do this with the following
command:

/etc/init.d/haproxy stop

If the test was successful, we can now restart (or start) the Nginx server. Again, use sudo
/etc/init.d/nginx restart or sudo service nginx restart on most systems.

Head over to your web browser and enter the URL domaini.com to take a look at our
WordPress installation site. To make sure nothing but domaini.com works, try to go to
domain2.com and expect no response.

Adding more domains to Nginx

To add another domain to match in Nginx, you can create a new file in the
/etc/nginx/conf.d/ directory and reload the Nginx configuration, as shown in the
following code:

cp /etc/nginx/conf.d/wpl.conf /etc/nginx/conf.d/wp2.conf
sed -i "s/wpl/wp2/9g" /etc/nginx/conf.d/wp2.conf

sed -i "s/domainl/domain2/g" /etc/nginx/conf.d/wp2.conf
sed -1 "s/49187/49188/q9" /etc/nginx/conf.d/wp2.conf

#test config
/etc/init.d/nginx configtest

#reload config
/etc/init.d/nginx reload

Copy the configuration file, replace a few names, run configtest, and reload Nginx.

Try domaini.com in your browser to make sure it still works. You should still see the
WordPress installation page (unless you installed WordPress, of course); head over to
domain2.com after that to see whether our new configuration is used.

If you want to take a site down, just change the file’s extension from .conf to something
else and reload Nginx.

Automating the process of mapping
domains

The limitations in this setup are that it’s manual and hands-on every time a new domain is
added. On my website (http://oskarhane.com), I’ve written some blog posts about how this
process could be automated and those posts are my most-read posts of all time.

I was very glad when I found nginx-proxy by Jason Wilder. nginx-proxy solves this
problem in a more clever way than me by monitoring Docker events via the Docker
Remote API.

Note

You can read more about nginx-proxy on its GitHub page
(https://github.com/jwilder/nginx-proxy).

nginx-proxy comes as a container and we can run it by executing the following
command:

docker run -d -p 80:80 -v /var/run/docker.sock:/tmp/docker.sock
jwilder/nginx-proxy

We are giving the container our Docker socket, so it can listen for the events we are
interested in, which are container starts and stops. We also bind the Docker hosts’ port 80
to this new container, making it the entrance container for all incoming web requests.
Make sure you stop Nginx on the Docker host before starting the nginx-proxy container.
You can do this with the following command:

/etc/init.d/nginx stop

When a container starts, nginx-proxy creates an nginx reverse proxy config file and
reloads Nginx—just like we did, but fully automated with nginx-proxy.

To tell nginx-proxy which domain we want mapped to which container, we must run our
containers with an environment variable named VIRTUAL_HOST.

In our crane.yaml file , we add an environment variable in the wp run section:

containers:
wp:
image: oskarhane/wordpress
run:
volumes-from: ["mydata"]
link:

- mymysql:mysql
publish: ["80"]
detach: true
env: ["VIRTUAL_HOST=domainl.com"]

Now, we just have to lift this with crane again to have this container mapped to the
domain domaini.com on port 80:

http://oskarhane.com
https://github.com/jwilder/nginx-proxy

crane lift web --recreate

Summary

In this chapter, we saw how you can solve the problem of having multiple containers that
want to serve data on the same public port. We learned what a proxy server and reverse
proxy server is and how a reverse proxy is used in load balancing.

We installed and configured two different reverse proxies: HAProxy and Nginx. In my
workflow, the Nginx setup fits better, just copying a file, replacing a few words, and then
reloading Nginx to have it working. HAProxy might work better in your setup; the choice
is yours and one cannot be said to be better than the other.

nginx-proxy automates the process of creating a reverse proxy for containers that are
started and is an OK solution for a PaaS, except for one thing: easy and straightforward
deployment. That’s what the next chapter is all about.

Chapter 7. Deployment on Our PaaS

In the previous chapters, we went from setting up our PaaS in a very hands-on manner to a
“hacked-together-automated” way by combining tools such as Crane and nginx-proxy.
One part is still missing—how to deploy your code.

In this chapter we will go through the following topics:

The problem with our current setup

The tools/services available

Dokku— mini-Heroku

Setting up a WordPress app with Dokku

The problem with our current setup

Our current setup consists of three containers: a WordPress container, a MySQL container
and a data volume container, tied together with Crane.

The main problem with our current setup using a VOLUME container as file storage is that
we need a way into the volume to edit files. As of now, the only way to get into it is by
mounting it on another container.

Another problem is that we don’t version control our source code. We have just
downloaded WordPress and some plugins and left it there. What if we update WordPress
or make some other changes? We surely want to have that under version control.

If we want to keep the application architecture as it is, there are two options:

e (Create a new container that mounts our data volume container, install it, and get
access to it with SSH
e Install and open access to SSH in our WordPress container

With SSH installed, we can access the containers shell from a remote machine, and so, we
can install Git to version control to our files. In this way, we can connect and push new
code into the data volume container when we need to.

When connecting with SSH, you can go straight into the container without needing to
connect to the Docker hosts shell.

If you are okay with connecting to the Docker host, and from there, if you open a new
shell to get into your data volume container, a third option would be to SSH into your
Docker hosts and then access the container with docker exec -it container_name
/bin/sh.

While this certainly works, there are easier ways to do it.

The tools/services available

When we look at hosted PaaS providers available today, two of them come to mind—
OpenShift and Heroku. Many developers love Heroku because of its ease of use. Their
philosophy gives a hint why:

“Developer Productivity:

Developer productivity is our battle cry, at the core of everything we do. Why require
three steps when one will do? Why require any action at all when zero steps will do?”

Developers usually want to spend time on their code, not managing servers, deployment,
and so on.

On Heroku, you get a remote Git repository into which you can push code. Your app’s
language and dependencies are identified by special files, depending on the language you
use. Environment variables are used for configuration, and you instruct Heroku what to
execute by specifying commands in a special file, called Procfile, that you include in your
source code.

Whenever your push code into your remote Heroku Git repository, the app rebuilds and
you have it online right away. If you have special build requirements, Heroku lets you
create your own buildpacks where you can specify exactly what’s to be done.

Basically, if you want to set up a WordPress blog on Heroku, you need to go through these
steps:

1. Locally download the latest version of WordPress.

2. Create a Procfile and define what to execute (a buildpack that runs PHP and Apache2
in this case).

Create a composer . json file that specifies that PHP is a dependency.

Make some changes to the WordPress config files.

Create the Heroku app, add add-ons (such as a database), and define environment
variables on Heroku.

6. Push your local code into Heroku.

o1k w

When you make a change to the code, you just Git push to Heroku to deploy the new
code. You cannot edit code directly on Heroku’s servers, nor can you install themes or
plugins (you have to do that locally and push the new code).

£33 OPENSHIFT

If you chose a provider such as OpenShift instead, you will have a bit more control over
your PaaS, You can connect to it with SSH and also store static files downloaded by apps.

It is something like this we are looking for; it’s just that we want to host our own platform
and have Docker containers used in the background.

Dokku — Docker-powered mini-Heroku

Dokku can be found at https://github.com/progrium/dokku. It is a project that is described
by its authors as follows:

“Docker powered mini-Heroku in around 100 lines of Bash.”

Feature wise, Dokku carries out deployment in the same way as Heroku does. Let’s install
Dokku and see what it can do for our PaaS.

https://github.com/progrium/dokku

Installation

Dokku requires Ubuntu 14.04 to run, and we start by creating a new EC2 instance running
that.

Here is a screenshot of what we see:

® Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-
3d50120d
Ubuntu !
Ubuntu Server 14.04 LTS (HVM), EBS General Purpose (SSD) Volume Type. 64-bit

Support available from Canonical (http://www.ubuntu.com/cloud/services).

Root device type: ebs Virtualization type: hvm

When we have created an instance and have it up and running, we can start by installing
Docker itself:

sudo apt-get install docker.io
When that is done, we go ahead and install Dokku.

The recommended bootstrap bash installation didn’t work for me, so I cloned the repo
instead:

cd /tmp

git clone https://github.com/progrium/dokku.git
cd dokku

sudo make install

dokku version

Note

You can read about the installation process on the official installation page at
http://progrium.viewdocs.io/dokku/installation.

The installation part will take a while, but it should succeed.

According to the document through the preceding link, we should edit the
/home/dokku/VHOST file to hold the content of a domain name we plan to use. We skip this
for now because it includes setting some DNS records. When we leave that file empty, we
will be reaching our PaaS in the form of http://ip:port. We will come back to this step
at a later point.

The only step left now is to create an ssh key pair on our local machine and add the public
part in the server user Dokku’s authorized_keys file so that we can connect with Git in a
very secure way without using a password.

On your local machine, use these commands:

cd ~/.ssh
ssh-keygen -t rsa

http://progrium.viewdocs.io/dokku/installation

#I named my key pair id_rsa
cat id_rsa.pub
#copy the output so you have it in your clipboard

On the server, use the following:

#As your ubuntu user

#Replace <publickey> with the key you just copied

#<remoteuser> can be replaced with anything, like "remoteuser".
echo "<publickey>" | sudo sshcommand acl-add dokku <remoteuser>

If you name your ssh-key something other than id_rsa, you will have to edit your local
.ssh/config file to get it to work.

Now the Dokku configuration is done and we should be able to start using it.

Creating a sample Dokku app

It is time for us to set up a demo app just so that you can learn the process. In this case,
let’s take Heroku’s Node . js sample app.

We start off by cloning Heroku’s node-js-sample GitHub repository to get the app’s
content. The following tasks are all supposed to be done on your local machine, and when
I enter server.com, you should enter the URL or the IP address of your server. If you use a
domain, make sure that you’ve set up DNS records for it or entered a record in your local

/etc/hosts file:

#Clone the repo

git clone git@github.com:heroku/node-js-sample.git
cd node-js-sample

#Add a Dokku git remote

git remote add dokku dokku@server.com:first-app

#Push to Dokku
git push dokku master

When we push to a non-existing branch or app name in Dokku, Dokku will create a new
app and deploy it. When the push is done, you should see something like this at the bottom
of the output:

=====> Application deployed:
http://54.191.69.5:49154

Of course, the IP address and port will not be the same for you.

The output is displayed, as follows:

®@0® node-js-sample — bash — 110x26

— etag@1.5.1 (crc@3.2.1)
— debug®2.1.1 (ms@8.6.2)
— send@®.11.@ (destroy@1.8.3, ms@8.7.0, mime@1.2.11)
— on-finished@2.2.8 (ee-first@1.1.8)
— type-is@1.5.5 (mime-types@2.8.7)
— proxy-addr@1.@.5 (forwarded@®.1.8, ipaddr.js@®.1.6)
L— accepts@!.2.2 (negotiator@®.5.8, mime-types@2.@.7)
Caching node_modules directory for future builds
Cleaning up node-gyp and npm artifacts
No Procfile found; Adding npm start to new Procfile
Building runtime envirenment
Discovering process types
Procfile declares types -> web
Releasing first-app ...
Deploying first-app ...
Running pre-flight checks
check-deploy: /fhome/dokku/first-app/CHECKS not found. attempting to retrieve it from container ...
CHECKS file not found in container. skipping checks.

> Running post-deploy

unsupported vhost config found. disabling vheost suppert

> Application deployed:

http://54.191.69.5:49154

To dokku@ohdokku.com:first-app
#% [new branch] master -> master
oskarhane@0skar4j-2 ~/tmp/paas/node-js-sample (master)$ I

Enter the ip:port in your web browser to find yourself a page saying Hello World.
We’ve just deployed our first app on Dokku!

To modify and redeploy the site, we can create a file named index.html inside public/
folder in our node-js-sample project. This node app will always look for files in the
public folder. If the requested file isn’t found, the app falls back to just printing Hello
World. So, if we create a file and request it, the node server will serve it to us.

Paste this as the content of the index.html file:

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Hello</title> </head>
<body>
<hl>First edit!</h1>
</body>
</html>

It’s a simple HTML page.
Let’s go ahead and create the file and push it, as shown in the following code:

nano public/index.html
#paste the HTML
#save the file

#commit your changes
git add public/index.html
git commit -m "Added first HTML page."

#push to dokku
git push dokku master

Note

Note from the output that the port will change every time you deploy, since a new
container is created and your old container is shut down.

Later, when we add a domain name to deploy on, the URL will, of course, be the same.
The Nginx config file is updated upon deployment. Point your browser to the new
ip:port, and you should see a huge headline saying First edit!.

Whenever you make edits, just push them. Dokku will take care of the rest.

How Dokku works

As I described the basic step of Heroku earlier, you might recognize the steps when
deploying on Dokku, and that is also Dokku’s goal. They want people like us to feel
comfortable with the deployment process.

Dokku can be seen as the glue between the following tools: Docker, Buildstep, ssh-
command, pluginhook, ssh, git, and nginx. The source code is just about 100 lines long,
and it ships with a few plugins that together contain about 500 lines of code. This is the
power of Dokku—anyone can write plugins to extend the functionality of Dokku.

We have not yet installed any plugins, and a clean installation like ours can do only basic
stuff such as deploy, see an app’s logs, delete an app, and run a command in the app’s
container. There are quite a lot of plugins; they are all listed at

http://progrium.viewdocs.io/dokku/plugins.
The receive process

If we take a look at the main Dokku file (named dokku in the projects root), we notice that
whenever a receive action is triggered (which happens when we push to the master
branch), we see this code:

case "$1" 1in

receive)
APP="3$2",; IMAGE="dokku/$APP"
echo "----- > Cleaning up.."
dokku cleanup
echo "----- > Building $APP.."
cat | dokku build $APP
echo "----- > Releasing $APP.."
dokku release $APP
echo "----- > Deploying $APP.."
dokku deploy $APP
echo "=====> Application deployed:"
dokku urls $APP | sed "s/AN/ /"

echo
e

Through this output we can recognize when we have pushed to the master.

If we follow the plugin chain when deploy is called, we end up with a plugin hook named
post-deploy being called. A standard plugin, named nginx-vhosts, is triggered, and this
in turn calls a function inside that plugin named nginx:build-config.

A code snippet from that preceding file looks like this:

case "$1" in
nginx:build-config)
APP="$2"; DOKKU_APP_LISTEN_PORT="$3"; DOKKU_APP_LISTEN_IP="${4}"
VHOST_PATH="$DOKKU_ROOT/$APP/VHOST"
WILDCARD_SSL="$DOKKU_ROOT/tls"
SSL="$DOKKU_ROOT/$APP/t1s"

if [[-z "$DOKKU_APP_LISTEN_PORT"]] && [[-f "$DOKKU_ROOT/$APP/PORT"

http://progrium.viewdocs.io/dokku/plugins

1]; then
DOKKU_APP_LISTEN_PORT=$(< "$DOKKU_ROOT/$APP/PORT")
fi
if [[-z "$DOKKU_APP_LISTEN_IP"]] && [[-f "$DOKKU_ROOT/$APP/IP" 1];
then
DOKKU_APP_LISTEN_IP=$(< "$DOKKU_ROOT/$APP/IP")
fi

[[-f "$DOKKU_ROOT/$APP/ENV"]] && source $DOKKU_ROOT/$APP/ENV
if [[! -n "$NO_VHOST"]] && [[-f "$DOKKU_ROOT/$APP/VHOST"]]; then

NGINX_CONF="$PLUGIN_PATH/nginx-vhosts/templates/nginx.conf"
SCHEME="http"

APP_NGINX_TEMPLATE="$DOKKU_ROOT/$APP/nginx.conf.template"
if [[-f $APP_NGINX_TEMPLATE]]; then
echo "----- > Overriding default nginx.conf with detected
nginx.conf.template"
NGINX_CONF=$APP_NGINX_TEMPLATE
fi

xargs -1 echo "----- > Configuring {}..." < $VHOST_PATH
Include SSL_VHOSTS so we can redirect http to https on that
hostname as well

NOSSL_SERVER_NAME=$(echo $NONSSL_VHOSTS $SSL_VHOSTS| tr '\n'" ' ')
if [[-n "$DOKKU_APP_LISTEN_PORT"]] && [[-n "$DOKKU_APP_LISTEN_IP"
11; then
echo "----- > Creating $SCHEME nginx.conf"

echo "upstream $APP { server
$DOKKU_APP_LISTEN_IP:$DOKKU_APP_LISTEN_PORT; }" >
$DOKKU_ROOT/$APP/nginx.conf

eval "cat <<< \"$(< $NGINX_CONF)\" >> $DOKKU_ROOT/$APP/nginx.conf"

echo "----- > Running nginx-pre-reload"
pluginhook nginx-pre-reload $APP $DOKKU_APP_LISTEN_PORT
$DOKKU_APP_LISTEN_IP

echo " Reloading nginx"
restart_nginx

fi

else

if [[-f "$DOKKU_ROOT/$APP/VHOST"]1]; then
echo "----- > VHOST support disabled, deleting $APP/VHOST"
rm "$DOKKU_ROOT/$APP/VHOST"

fi

if [[-f "$DOKKU_ROOT/$APP/nginx.conf"]]; then
echo "----- > VHOST support disabled, deleting nginx.conf"

rm "$DOKKU_ROOT/$APP/nginx.conf"

echo "----- > VHOST support disabled, reloading nginx after
nginx.conf deletion"
restart_nginx
fi
fi

If we look through that code, we can see that it looks for a domain name in the

$DOKKU_ROOT/$APP/VHOST file, and if that is found, sets some config variables and inserts
them into a copy of the templates/nginx.conf file.

That file has these contents:

server {
listen [::]:80;
listen 80,
server_name $NOSSL_SERVER_NAME;
location / {

proxy_pass http://$APP;

proxy_http_version 1.1;

proxy_set_header Upgrade \$http_upgrade;
proxy_set_header Connection "upgrade";
proxy_set_header Host \$http_host;
proxy_set_header X-Forwarded-Proto \$scheme;
proxy_set_header X-Forwarded-For \$remote_addr;
proxy_set_header X-Forwarded-Port \$server_port;
proxy_set_header X-Request-Start \$msec;

}
include $DOKKU_ROOT/$APP/nginx.conf.d/*.conf;

}

Now that looks very much like the nginx config we created in the last chapter, right? The
post-deploy part of Dokku is basically Jason Wilder’s nginx-proxy. They accomplish the
same result, but they get there in very different ways.

Dokku plugins

Add-ons in Heroku are called plugins in Dokku. Since we cannot specify docker run
command parameters directly from Dokku, we need plugins to connect containers and add
data volume containers.

Here’s a list of a few usable Dokku plugins that we’ll soon use.

Dokku domains plugin

Dokku domain plugin enables you to specify multiple domains in one app. By default,
only one URL can be mapped to an app:

dokku domains:set myawesomeapp.com www.myawesomeapp.com
URL.: https://github.com/wmluke/dokku-domains-plugin
Dokku-docker-options

With this plugin, you can pass any options to the Docker daemon when docker run
command is executed. It can be used to mount volumes, link containers, and so on:

dokku docker-options:add myapp "-v /host/path:/container/path"
dokku docker-options:add myapp "-link container_name:alias"

URL.: https://github.com/dyson/dokku-docker-options
Volume plugin for Dokku

Here’s a plugin that enables you to mount volumes on your service containers. It also has
commands to dump (export) and restore the data:

dokku volume:add foo /path/in/container
dokku volume:dump foo /path/in/container > foo.tar.gz

URL.: https://github.com/ohardy/dokku-volume
Dokku-link

You can link containers with this plugin:

dokku link:create <app> NAME [ALIAS]
dokku link:delete <app> NAME [ALIAS]

URL: https://github.com/rlaneve/dokku-link
MariaDB plugin for Dokku

This plugin enables you to create and use MariaDB containers. MariaDB can be used as a
replacement for MySQL and is generally faster:

dokku mariadb:create <app>
dokku mariadb:link <app> <db>
dokku mariadb:dumpraw <app>

URL: https://github.com/Kloadut/dokku-md-plugin

https://github.com/wmluke/dokku-domains-plugin
https://github.com/dyson/dokku-docker-options
https://github.com/ohardy/dokku-volume
https://github.com/rlaneve/dokku-link
https://github.com/Kloadut/dokku-md-plugin

MySQL plugin: https://github.com/hughfletcher/dokku-mysql-plugin

https://github.com/hughfletcher/dokku-mysql-plugin

Setting up a WordPress app with Dokku

Now that we have played around with Dokku for a while, exploring how it works and
what plugins are available, it’s time to set up a WordPress site. After all, that’s why we
were exploring it in the first place.

This is what we are going to do:

1. Create a new local Git repository and download WordPress on it.
2. Install the MariaDB plugin, create a database, and link it to our app.
3. Configure WordPress to connect to our linked database.

On your local computer, download and unpack the latest version of WordPress and create
a new Git repository. Create a composer . json file to tell Dokku that this is a PHP app we
are creating.

Note

You can read more about how to hint Dokku on what type of app you are creating at
https://devcenter.heroku.com/articles/buildpacks (yes, Dokku uses Heroku buildpacks) and
looks to detect functions. Dokku uses a library called Buildstep to make application builds
using Docker and Buildpacks.

Let’s go ahead and get started now.

I used a server on my domain, ohdokku.com, for this app:

#Download Wordpress

curl -0 https://wordpress.org/latest.zip
unzip latest.zip

mv wordpress wpl

cd wpl

#Create a new Git repo

git init

git add .

git commit -m "Initial commit."

#Create a composer.json file to tell Dokku we are using php
echo '{}' > composer.json

git add .

git commit -am "Add composer.json for PHP app detection."

#Add a remote so we can push to Dokku
git remote add dokku dokku@ohdokku.com:wpl

On the server we have to install the MariaDB or MySQL plugin:

cd /var/lib/dokku/plugins

sudo git clone --recursive https://github.com/Kloadut/dokku-md-plugin
mariadb

cd mariadb/dockerfiles/

git checkout master

https://devcenter.heroku.com/articles/buildpacks
http://ohdokku.com

cd ../../
sudo dokku plugins-install

Back to the client side (you can do this on the server as well, but the whole point of this
type of PaaS is being able to do all of this repetitive stuff on the client).

The result is as follows:

@ @ wp1 — bash — 86x11
oskarhane®@0skar4j-2 ~/tmp/paas/wpl (master)$ ssh dokku@ohdokku.com mariadb:create wpl

> MariaDB container created: mariadb/wpl

Host: 172.17.42.1

Port: 49153

User: 'root’

Password: 'mbomgxgdWIhTFVNiu'
Databasze: 'db’

oskarhane®@0skar4j-2 ~/tmp/paas/wpl (master)$ I

As you can see, the output from the create command will show our database credentials.

Now that the database is set up, we can go ahead and push our app for the first time:

git push dokku master

You should notice that Dokku detects that you are pushing a PHP app. Since we haven’t
specified anything at all in our composer . json file, a default package of PHP and
Apache2 will fire up.

Create a MariaDB database called wp1_db:

ssh dokku@ohdokku.com mariadb:create wpl_db
ssh dokku@ohdokku.com mariadb:1link wpl wpil_db

If we enter ip:port in a browser, a known page welcomes us—the WordPress installation
page. When we click on the Continue button, we see that we can’t continue before we
create a wp-config.php file.

We have just created the link between the MariaDB container and the WP container, but
we haven’t made the link in code yet. WordPress has no idea how to connect to the
database.

We start off by renaming the wp-config-sample.php file to wp-config.php and opening
the file in an editor:

// ** MySQL settings - You can get this info from your web host ** //

/** The name of the database for Wordpress */

define('DB_NAME', getenv('DB_NAME'));

/** MySQL database username */
define('DB_USER', 'root');

/** MySQL database password */

define('DB_PASSWORD', getenv('DB_PASSWORD'));

/** MySQL hostname */
define('DB_HOST', getenv('DB_HOST').":".getenv('DB_PORT'));

Edit the credentials as you just saw to make WordPress look for environment variables
that our linked MariaDB gives us:

git add -A .
git commit -m "Add wp-config.php and add credentials."
git push dokku master

Wait until you get a new ip:port that our app is deployed to, and then enter the info in
your web browser.

Now you should be able to install WordPress.

The output is as follows:

Dashboard

Welcome to WordPress!
We've assembled some links to get you started:

Get Started

Customize Your Site

or, change your theme completely

Starting multiple apps

To start multiple apps with Dokku, just repeat the simple process, as follows:

1. Create a local Git repository with WordPress in it, and create a remote Git repository.
2. Create and link a database with the MariaDB plugin.

Edit your wp-config.php file.
3. Push to deploy.

The name you set on your app when adding the remote from Git command:

git remote add dokku dokku@ohdokku.com:wpl

This command will create the URL to the WordPress site (wpl.ohdokku.com). You can set
a complete custom domain as the name like: git remote add dokku
dokku@ohdokku.com:wpl.oskarhane.com that will work if I point wpl.oskarhane.com to
my server.

http://wp1.ohdokku.com
http://wp1.oskarhane.com

Adding a domain to Dokku

I waited with setting up domains to Dokku, since it involves logging in to a DNS provider
and setting up DNS records to point the domain to our server. We set up DNS records to
point our domain name to our server’s IP address so that our server can be reached by
entering our domain name in the web browser’s location bar.

I usually use Amazon Route 53 to handle DNS for domains, since they’re very stable and
easy to use. It costs about a dollar a month for low-traffic sites. The setup is the same for
any DNS provider. You have to add two records, one for yourdomain.com and one for
*.yourdomain.com.

The records we are going to enter are A-records, which means that we point the domain
names to a specific IPv4 address. The Time To Live (TTL) value is not important right
now, but it means TTL and tells all other DNS servers that get requests for this domain
how long they can cache the current value.

The output is as follows:

Create Record Set

Name: ohdokku.com.
Type: A — |Pva4 address =

Alias: Yes @ No

TTL (Seconds): 300/ 1m || 5m || 1h || 1d

Value: 54191695

IPv4 address. Enter multiple addresses
on separate lines.

Example:
192.0.2.235
198.51.100.234
Routing Policy: Simple L

Route 53 responds to queries based only on the values in this record. Learn
More

You should, of course, change the IP to the public IP your server has. When setting the A-
record for the wildcard subdomains, just enter * in the input field at the top.

To see whether your DNS provider can resolve your domain name, execute ping
yourdomain.com in a terminal. You’ll see the resolved IP right there. If you’ve just bought
the domain, you should be able to see the result right away, but if you’ve used the domain
for a while, the old TTL value might delay the effect a bit.

If you want to wait for the setting of DNS records (which is common during
development), you can set local records on your computer by editing the /etc/hosts file,
as shown in the following command snippet:

sudo nano /etc/hosts

#Add this line to the file
54.191.69.5 ohdokku.com
#Save and exit

One thing to remember here is that you can’t enter records for wildcard subdomains. If
you plan to develop multiple apps on subdomains, you have to enter one record for each of
them. Also, don’t forget to remove these records when you’re done; it can get quite
confusing (and interesting) when you forget you have records for the domains you used.

On the Dokku server, create a file named /home/dokku/VHOST and enter yourdomain.com
in it.

All apps being created from now on will be subdomains of this domain, unless you give
the apps complete domain names.

More notes on Dokku

Just like Heroku, Dokku makes it easy for developers to deploy and push code. If you
download a WordPress plugin straight from your Dokku app, it will be gone when you
restart your Dokku app. It is advisable to keep a local copy that can easily be started or a
dev, test, and staging server that you can download new plugins on and push to your
Dokku app from to ensure they are persistent.

Tip
Images and videos should be uploaded to something such as Amazon via a plugin when

using this kind of infrastructure.

You must also have your WordPress site send e-mails from an external e-mail provider,
such as Mandrill. A plugin like WP Mail SMTP will solve that for you.

We still have a few manual steps (for example, downloading WordPress and editing wp -
config.php) to do when deploying a WordPress app on Dokku, but the task of creating a
custom Buildstep to remove the manual parts is beyond the scope of this book.

Another option is to have Composer handle the installation of WordPress with the
composer . json file, but WordPress does not officially support this and it requires a few
hacks, so I'll leave that up to you.

Note

If you want to learn more about composer, you can go to the provided link
http://wpackagist.org.

http://wpackagist.org

Summary

In this chapter, we went all the way to create our own PaaS by adding deployment to the
process. What we looked into up to this chapter was all about organizing containers and
direct incoming traffic so that visitors can reach the correct container.

With Dokku, we don’t have to worry about that; all we have to care about is our code. As
soon as we push our code, Dokku takes over and does the right things. Dokku makes it
look really easy and that is why, I started from manually creating and linking containers
and configuring reverse proxies—so that you would understand what Dokku does.

The next chapter takes us to the bleeding edge: what’s being developed right now that can
take private PaaS with Docker one step further?

Chapter 8. What’s Next?

So far, we have run our PaaS on a single host, which can be a problem if we need to scale
out. There is a lot happening in this space, and I have selected a few projects that I will
introduce in this chapter. These projects vary a lot in how mature they are, one is ready for
use in production while the other is in a prototype state. In this chapter, we will cover the
following topics:

What is a Twelve-Factor app?
Flynn

Deis

Rocket

Orchestration tools

What is a Twelve-Factor app?

Many of today’s apps are, in fact, web apps that you run in your web browser. Gmail,
Slack, Wunderlist, Trello, and so on are all web apps or software-as-a-service.

It is these kind of apps that are suitable to be run on a PaaS.

The Twelve-Factor app is a methodology for building software-as-a-service apps that
fulfill the following criteria:

Use declarative formats to set up automation as well as to minimize the time and cost
for new developers who join the project

Have a clean contract with the underlying operating system, offering maximum
portability between execution environments

Suitable for deployment on modern cloud platforms, obviating the need for servers
and systems administration

Minimize divergence between development and production, enabling continuous
deployment for maximum agility

Scale up without significant changes to tooling, architecture, or development
practices

The Twelve Factors are defined as follows:

Codebase (One codebase tracked in revision control, many deploys): This puts your
code in a version control system such as Git.

Dependencies (Explicitly declare and isolate dependencies): This lists all the
versions of all the libraries that your app depends on in a single place.

Conlfig (Store config in the environment): Since config will vary between
environments such as the username or pass to a database, it should not be part of the
code. You can set the config file in environment variables and have your app read
them in at runtime.

Backing Services (Treat backing services as attached resources): These have all the
backing services, such as mail server, database, and cache system, among others.
These will be referenced by a URL endpoint. This way your code doesn’t have to
care whether the backing service is running on the same machine or across the world.
Build, release, run (Strictly separate build and run stages): The build stage creates
bundles, assets, and binaries. This is the developer’s job. When you’ve placed a
package on a server, you are ready to enter the run stage by starting your application
and making it available on the server. This stage should be as easy as possible so that
anyone can do it.

Processes (Execute the app as one or more stateless processes): As stated earlier in
this book, you should separate your application data from your application service,
that is, it makes the service stateless. All the states should be in the shared storages
and databases.

Port binding (Export services via port binding): An example is backing services;
your service should be reachable via a URL endpoint.

Concurrency (Scale out via the process model): This keeps every process as an

independent service. This way you can scale just the parts of your app that really
need to be scaled.

¢ Disposability (Maximize robustness with a fast startup and graceful shutdown): This
is for app startup, which should be fast, and your app should be able to recover from
a crash by itself.

e Dev/prod parity (Keep development, staging, and production as similar as possible):
This keeps your development environment and setup as equal as possible to your
production environment and setup. Docker really excels here.

e Logs (Treat logs as event streams): Place your app’s error logs into a central place
where you get notified when a new error has occurred.

¢ Admin processes (Run admin/management tasks as one-off processes): If you are
doing administrative tasks, run them on a machine in the production environment
with the latest code base. You should run queries directly against the database.

I encourage you to go to http://12factor.net in order to read more about each one of the
Twelve Factors. It’s a good read; you will get an understanding of why some design
decisions were made on the following projects.

http://12factor.net

Flynn

The guy who created Dokku, Jeff Lindsay, has also co-created Flynn. Flynn is like a
super-Dokku that, among other things, lets you run your PaaS on multiple hosts.

“Flynn is two things:

A distribution of components that out-of-the-box gives companies a reasonable
starting point for an internal platform for running their applications and services.

The banner for a collection of independent projects that together make up a toolkit or
loose framework for building distributed systems.

Flynn is both a whole and many parts, depending on what is most useful for you. The
common goal is to democratize years of experience and best practices in building
distributed systems. It is the software layer between operators and developers that
makes both their lives easier.”

I have tried using Flynn a few times, but I have always gone back to using Dokku again
because I find Dokku easier to use, and my clients don’t need the extra features such as
multihost PaaS.

URL: http:/flynn.io

Status: This is not suitable for use in the production environment because it’s in a beta
stage.

http://flynn.io

Deis

22 DEIS

Deis is built on a lightweight Linux distribution that is built to run containers, called
CoreQS, and on Docker to take advantage of the distributed services, such as etcd,
available there.

“Deis is a lightweight application platform that deploys and scales Twelve-Factor
apps as Docker containers across a cluster of CoreOS machines.”

I found Deis to be a very promising project and would like to work with it more. I have
barely touched it but what I have seen so far looks good.

Deis can deploy any language or framework running on Linux using Docker, and it also
includes Heroku buildpacks for Ruby, Python, Node.js, Java, Clojure, Scala, Play, PHP,
Perl, Dart, and Go.

The workflow is Heroku-like and you just need to deploy twelve-factor apps, that is, save
the application state in a backing service.

Fun fact: Deis financially backs/supports Dokku.
URL.: http://deis.io

State: Deis is ready for production from version 1.0.

http://deis.io

Rocket

@Rocket

CoreOS has been one of the most popular ways to run a multihost Docker PaaS. They
have done excellent work and have built some multihost PaaS tools, such as Deis, that use
CoreOS tools and services to deliver their version of PaaS.

In December 2014, the CoreOS team decided to announce their own container runtime:
Rocket. Rocket is a direct competitor to the original Docker. The reason why they are
launching Rocket is because they believe Docker has lost its initial idea: running reusable
standard containers. The CoreOS team believes that Docker is stepping away from the
initial idea by adding more and more features and services around the Docker
environment.

“Rocket is a new container runtime, designed for composability, security, and speed.
Today we are releasing a prototype version on GitHub to begin gathering feedback
from our community and explain why we are building Rocket.”

According to the CoreOS team, they will continue to have CoreOS to be the perfect thing
to run Docker. I guess we will see what happens in the future, but I hope they stand by
their words.

URL.: https://github.com/coreos/rocket

State: Rocket is in its very early state and not ready for production.

https://github.com/coreos/rocket

Orchestration tools

The tools I have introduced now are tools that will help you keep your mind on the code
and give you an easy way to deploy your apps to production. If you are more interested in
an orchestration tool—a tool that helps you manage container clusters—there are a few of
them out there as well. The tools that currently come to mind are Google’s Kubernetes,
Apache Mesos/Marathon, CoreOS Fleet, and the soon to be released Swarm from Docker.

Summary

When you feel it’s time to move your PaaS from a single host to scale across multiple
hosts, these tools are what you should be looking for. I’'m sure some worthy competitors
will pop up in the future since this is a hot area right now.

Index
A

e Amazon
o URL / Docker on Amazon EC2
e Amazon EC2
o using / Docker on Amazon EC2
o Docker, installing / Installation

o Docker, upgrading / Upgrading Docker on Amazon EC2
e Apache

o preparing, for caching / Preparing for caching

base image
o about / The Docker image
Buildpacks

o reference link / Setting up a WordPress app with Dokku
Buildstep

o about / Setting up a WordPress app with Dokku
BusyBox

o about / Data volume image

e command-line interface
o about / The Docker command-line interface
e commands, Docker

o about / Displaying Hello World

docker ps / Displaying Hello World
docker ps -a / Displaying Hello World
docker images / Displaying Hello World
docker run / Displaying Hello World

o docker stop / Displaying Hello World
e composer

o reference link / More notes on Dokku
e container

o about / The Docker container
e container ID

o about / The Docker container
e containers

o about / What is Docker?

o parameters, passing / Passing parameters to containers

o connecting, manually / Manually connecting containers

o connecting, Docker Compose used / Connecting containers using Docker
Compose

o connecting, Crane used / Connecting containers using Crane

o setup issue / The problem with our current setup
e Crane

o used, for connecting containers / Connecting containers using Crane
about / Connecting containers using Crane

installing / Installing Crane

usage / Usage
lift command / Usage

graph command / Usage
logs command / Usage
status command / Usage
configuring / Configuration

O O O o

O O O O O O o o

data volume container

o mounting / Mounting a data volume container

o executing / Running a data volume container

o contents, exploring / Exploring the contents of a data volume container
data volume image
creating / Creating a data volume images
BusyBox / Data volume image

o mount points, exposing / Exposing mount points
Dockerfile / The Dockerfile

data volumes
about / Data volumes
o host directory, mounting / Mounting a host directory as a data volume
data volume container, mounting / Mounting a data volume container
backup / Backing up and restoring data volumes
o restoring / Backing up and restoring data volumes
Deis
o about / Deis
o URL / Deis
Docker
o about / What is Docker?
o URL / What is Docker?
o URL, for installation / User permissions
Docker Compose
used, for connecting containers / Connecting containers using Docker Compose
about / Connecting containers using Docker Compose
installing / Installing Docker Compose

build command / Basic Docker Compose commands
kill command / Basic Docker Compose commands
logs command / Basic Docker Compose commands
port command / Basic Docker Compose commands
ps command / Basic Docker Compose commands
pull command / Basic Docker Compose commands
rm command / Basic Docker Compose commands
run command / Basic Docker Compose commands
scale command / Basic Docker Compose commands
start command / Basic Docker Compose commands
stop command / Basic Docker Compose commands

up command / Basic Docker Compose commands
service / Service

run command, using / Using the run command
scale command, using / Using the scale command
Paa$, setting up / Setting up our PaaS with Docker Compose

(e]

(e]

(e]

(e]

(e]

(e]

0O 0 0O o 0O O o 0O o o o o 0o 0O 0O 0O 0o o o

Dockerfile
o about / Browsing repositories
o creating, on WordPress image / Making our changes persist
Dockerfile, for PHP 5.6
o URL / Raising the upload limit
Docker Hub registry
about / The Docker Registry Hub
URL / The Docker Registry Hub
repositories, browsing / Browsing repositories
published images, exploring / Exploring published images

image, publishing / Publishing an image on the Docker Registry Hub
image, publishing with automated build option / Automated builds

Docker image

about / The Docker image

base image / The Docker image

parent images / The Docker image
hosting, on GitHub / Hosting on GitHub

publishing, on Docker registry hub / Publishing on the Docker Registry Hub
docker images command

o about / Displaying Hello World
Docker on Amazon EC2
o installing / Installation

o open ports / Open ports

o upgrading / Upgrading Docker on Amazon EC2
o user permissions / User permissions

Docker on Mac OS X
o installing / Docker on Mac OS X, Installation
o upgrading / Upgrading Docker on Mac OS X
Docker on Ubuntu Trusty 14.04 LTS
o installing / Docker on Ubuntu Trusty 14.04 LTS
o upgrading / Upgrading Docker on Ubuntu Trusty 14.04 LTS
o user permissions / User permissions
Docker on Windows
o installing / Docker on Windows, Installation
o upgrading / Upgrading Docker on Windows
docker ps -a command
o about / Displaying Hello World
docker ps command
o about / Displaying Hello World
Docker registry hub
o Docker image, publishing / Publishing on the Docker Registry Hub
docker run command
o about / Displaying Hello World
docker stop command

O O O O O O

O O O o

(e]

o about / Displaying Hello World
e Dokku

about / Dokku — Docker-powered mini-Heroku

URL / Dokku — Docker-powered mini-Heroku
installing / Installation

URL, for installation / Installation

sample app, creating / Creating a sample Dokku app
deploying / How Dokku works

receive process / The receive process

plugins / Dokku plugins
WordPress app, setting up / Setting up a WordPress app with Dokku
multiple apps, starting / Starting multiple apps

domains, adding / Adding a domain to Dokku
WordPress app, deploying / More notes on Dokku

Dokku-docker-options

o about / Dokku-docker-options
o URL / Dokku-docker-options
Dokku-link plugin
o about / Dokku-link
o URL / Dokku-link
Dokku domains plugin

o about / Dokku domains plugin
o URL / Dokku domains plugin
domains

o mapping, nginx-proxy used / Automating the process of mapping domains
o adding, to Dokku / Adding a domain to Dokku

0O 0O 0O O o 0o o o o o o o

F

e Flynn
o about / Flynn
o URL/Flynn

G

e GitHub

o image sources, hosting / Hosting image sources on GitHub

o URL / Hosting image sources on GitHub
o Docker image, hosting / Hosting on GitHub

H

e HAProxy
o about / Implementation with HAProxy
o URL / Implementation with HAProxy

o installing / Installing HAProxy
o configuring / Configuring HAProxy

o multiple domains, adding / Adding more domains to HAProxy
e Heroku

o about / The tools/services available
e host directory

o mounting, as data volume / Mounting a host directory as a data volume

image sources

o hosting, on GitHub / Hosting image sources on GitHub
installation, Crane

o about / Installing Crane
installation, Docker
o on Ubuntu Trusty 14.04 LTS / Docker on Ubuntu Trusty 14.04 LTS
o on Mac OS X / Docker on Mac OS X, Installation
o on Windows / Docker on Windows, Installation
o on Amazon EC2 / Installation
installation, Docker Compose
o about / Installing Docker Compose
installation, Dokku
o about / Installation
installation, HAProxy

o about / Installing HAProxy
installation, Nginx

o about / Installing Nginx
installation, WP Mail SMTP

o about / Plugin installation
installation, WP Super Cache

o about / Plugin installation

M

Mac OS X
o Docker, installing / Docker on Mac OS X, Installation
o Docker, upgrading / Upgrading Docker on Mac OS X
MariaDB plugin
o about / MariaDB plugin for Dokku
o URL / MariaDB plugin for Dokku
multiple containers, with same services

o problem / Explaining the problem
o solution, finding / Finding a solution

o solution, implementing / Implementing the solution
MySQL docker repository

o URL / Exploring published images

N

e Nginx
o about / Implementation with Nginx
o URL / Implementation with Nginx
o installing / Installing Nginx
o configuring / Configuring Nginx
o multiple domains, adding / Adding more domains to Nginx
® nginx-proxy
o used, for mapping domains / Automating the process of mapping domains
o URL / Automating the process of mapping domains

O

e OpenShift

o about / The tools/services available
e orchestration tools

o about / Orchestration tools
e OS X installer

o URL / Installation

PaaS
o setting up, with Docker Compose / Setting up our PaaS with Docker Compose
parameterized image

o creating / Creating a parameterized image
parent images

o about / The Docker image
plugins, Dokku

o about / Dokku plugins
Dokku domain plugin / Dokku domains plugin
Dokku-docker-options / Dokku-docker-options

volume plugin / Volume plugin for Dokku
Dokku-link plugin / Dokku-link

o MariaDB plugin / MariaDB plugin for Dokku
Procfile

o about / The tools/services available
Proxy server

o about / Finding a solution
published images

o exploring / Exploring published images

O O O o

receive process, Dokku
o about / The receive process
repositories

o browsing / Browsing repositories
reverse proxies

o about / Finding a solution
Rocket

o about / Rocket

o URL / Rocket

S

¢ solution, multiple containers with same services
o implementing, with HAProxy / Implementation with HAProxy

o implementing, with Nginx / Implementation with Nginx

T

e tags

o about / The Docker image
Time to live (TTL)

o about / Adding a domain to Dokku
tools/services

o OpenShift / The tools/services available

o Heroku / The tools/services available
Twelve-Factor app

o about / What is a Twelve-Factor app?

o URL / What is a Twelve-Factor app?
twelve factors

o codebase / What is a Twelve-Factor app?
dependencies / What is a Twelve-Factor app?
config / What is a Twelve-Factor app?
backing services / What is a Twelve-Factor app?
build / What is a Twelve-Factor app?
release / What is a Twelve-Factor app?
run / What is a Twelve-Factor app?
processes / What is a Twelve-Factor app?
port binding / What is a Twelve-Factor app?

concurrency / What is a Twelve-Factor app?
disposability / What is a Twelve-Factor app?
dev/prod parity / What is a Twelve-Factor app?

logs / What is a Twelve-Factor app?
admin processes / What is a Twelve-Factor app?

O 0O 0O O 0O 0O o o o o o o o

U

e Ubuntu Trusty 14.04 LTS
o Docker, installing / Docker on Ubuntu Trusty 14.04 LTS
o Docker, upgrading / Upgrading Docker on Ubuntu Trusty 14.04 LTS

\Y

¢ volume plugin
o about / Volume plugin for Dokku
o URL / Volume plugin for Dokku

W

Windows
o Docker, installing / Docker on Windows, Installation
o Docker, upgrading / Upgrading Docker on Windows
e Windows installer
o URL / Installation
e WordPress
o configuring / Moving from the defaults
e WordPress app
o setting up, with Dokku / Setting up a WordPress app with Dokku

o multiple apps, starting / Starting multiple apps
o domains, adding to Dokku / Adding a domain to Dokku

o deploying, on Dokku / More notes on Dokku
e WordPress Docker image

o URL / Exploring published images
e WordPress image

o creating / The WordPress image
o objective / Our objective
e WordPress image, objective

o Apache, preparing for caching / Preparing for caching
o upload limit, raising / Raising the upload limit
o WP Super Cache, installing / Plugin installation
o WP Mail SMTP, installing / Plugin installation
e WP Mail SMTP
o installing / Plugin installation
e WP Super Cache
o installing / Plugin installation

	Build Your Own PaaS with Docker
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Installing Docker
	What is Docker?
	Docker on Ubuntu Trusty 14.04 LTS
	Upgrading Docker on Ubuntu Trusty 14.04 LTS
	User permissions
	Docker on Mac OS X
	Installation
	Upgrading Docker on Mac OS X
	Docker on Windows
	Installation
	Upgrading Docker on Windows
	Docker on Amazon EC2
	Installation
	Open ports
	Upgrading Docker on Amazon EC2
	User permissions
	Displaying Hello World
	Summary
	2. Exploring Docker
	The Docker image
	The Docker container
	The Docker command-line interface
	The Docker Registry Hub
	Browsing repositories
	Exploring published images
	Summary
	3. Creating Our First PaaS Image
	The WordPress image
	Moving from the defaults
	Our objective
	Preparing for caching
	Raising the upload limit
	Plugin installation
	Making our changes persist
	Hosting image sources on GitHub
	Publishing an image on the Docker Registry Hub
	Automated builds
	Summary
	4. Giving Containers Data and Parameters
	Data volumes
	Mounting a host directory as a data volume
	Mounting a data volume container
	Backing up and restoring data volumes
	Creating a data volume images
	Data volume image
	Exposing mount points
	The Dockerfile
	Hosting on GitHub
	Publishing on the Docker Registry Hub
	Running a data volume container
	Passing parameters to containers
	Creating a parameterized image
	Summary
	5. Connecting Containers
	Manually connecting containers
	Exploring the contents of a data volume container
	Connecting containers using Docker Compose
	Installing Docker Compose
	Basic Docker Compose commands
	Service
	Using the run command
	Using the scale command
	Setting up our PaaS with Docker Compose
	Connecting containers using Crane
	Installing Crane
	Usage
	Configuration
	Summary
	6. Reverse Proxy Requests
	Explaining the problem
	Finding a solution
	Implementing the solution
	Implementation with HAProxy
	Installing HAProxy
	Configuring HAProxy
	Adding more domains to HAProxy
	Implementation with Nginx
	Installing Nginx
	Configuring Nginx
	Adding more domains to Nginx
	Automating the process of mapping domains
	Summary
	7. Deployment on Our PaaS
	The problem with our current setup
	The tools/services available
	Dokku – Docker-powered mini-Heroku
	Installation
	Creating a sample Dokku app
	How Dokku works
	The receive process
	Dokku plugins
	Dokku domains plugin
	Dokku-docker-options
	Volume plugin for Dokku
	Dokku-link
	MariaDB plugin for Dokku
	Setting up a WordPress app with Dokku
	Starting multiple apps
	Adding a domain to Dokku
	More notes on Dokku
	Summary
	8. What's Next?
	What is a Twelve-Factor app?
	Flynn
	Deis
	Rocket
	Orchestration tools
	Summary
	Index

