خانه / علم داده / آموزش و راهنمایی / آشنایی با الگوریتم های ضروری یادگیری ماشین – بخش اول : مقدمه
Newl-Machine-Learning-Algorithms

آشنایی با الگوریتم های ضروری یادگیری ماشین – بخش اول : مقدمه

داده ها در اعماق زندگی روزانه ما ریشه دوانده اند، از خرید روزانه تا انتخاب مدرسه و پزشک و مسافرت های ما امروزه داده محور شده اند. این امر نیاز به الگوریتم ها وروشهای هوشمند پردازش داده و یادگیری ماشین را صد چندان کرده است .

سایت مهندسی داده در جهت گسترش و تعمیق دانش داده در کشور، بر آن شده است تا الگوریتم های اصلی و ضروری یادگیری ماشین را با مثالهای گویا و با نمونه کدهایی با دو زبان پایتون و R در اختیار علاقه مندان قرار دهد. مبنای اصلی این آموزش هم مقاله ایست با همین نام از سایت آنالیتیکز ویدیا که البته مطالب مختلفی به آن اضافه شده است .

در این آموزش، بیشتر بر مفاهیم اصلی و الگوریتم ها تاکید شده است و مفاهیم ریاضی و آماری را باید از سایر منابع فرابگیرید .

انواع الگوریتم های یادگیری ماشین

سه نوع اصلی الگوریتم های یادگیری ماشین از قرار زیرند :

  • یادگیری نظارت شده (هدایت شده – Supervised Learning) : در این نوع از الگوریتم ها که بار اصلی یادگیری ماشین را بر دوش می کشند (از لحاظ تعداد الگوریتم های این نوع)، با دو نوع از متغیرها سروکار داریم . نوع اول که متغیرهای مستقل نامیده میشوند، یک یا چند متغیر هستند که قرار است بر اساس مقادیر آنها، یک متغیر دیگر را پیش بینی کنیم. مثلا سن مشتری و تحصیلات و میزان درآمد و وضعیت تاهل برای پیش بینی خرید یک کالا توسط یک مشتری ، متغیرهای مستقل هستند. نوع دوم هم متغیرهای وابسته یا هدف یا خروجی هستند و قرار است مقادیر آنها را به کمک این الگوریتم ها پیش بینی کنیم . برای این منظور باید تابعی ایجاد کنیم که ورودیها (متغیرهای مستقل) را گرفته و خروجی موردنظر (متغیر وابسته یا هدف) را تولید کند. فرآیند یافتن این تابع که در حقیقت کشف رابطه ای بین متغیرهای مستقل و متغیرهای وابسته است را فرآیند آموزش (Training Process) می گوئیم که روی داده های موجود (داده هایی که هم متغیرهای مستقل و هم متغیرهای وابسته آنها معلوم هستند مثلا خریدهای گذشته مشتریان یک فروشگاه) اعمال میشود و تا رسیدن به دقت لازم ادامه می یابد.  نمونه هایی از این الگوریتم ها عبارتند از رگرسیون، درختهای تصمیم ، جنگل های تصادفی، N نزدیک ترین همسایه، و رگرسیون لجستیک.
  • یادگیری بدون ناظر (unsupervised learning) : در این نوع از الگوریتم ها ، متغیر هدف نداریم و خروجی الگوریتم، نامشخص است. بهترین مثالی که برای این نوع از الگوریتم ها می توان زد، گروه بندی خودکار (خوشه بندی) یک جمعیت است مثلاً با داشتن اطلاعات شخصی و خریدهای مشتریان، به صورت خودکار آنها را به گروه های همسان و هم ارز تقسیم کنیم . الگوریتم Apriori و K-Means از این دسته هستند.

ml_types

  • یادگیری تقویت شونده (Reinforcement Learning) : نوع سوم از الگوریتم ها که شاید بتوان آنها را در زمره الگوریتم های بدون ناظر هم دسته بندی کرد ، دسته ای هستند که از آنها با نام یادگیری تقویت شونده یاد میشود. در این نوع از الگوریتم ها، یک ماشین (در حقیقت برنامه کنترل کننده آن)، برای گرفتن یک تصمیم خاص ، آموزش داده می شود و ماشین بر اساس موقعیت فعلی (مجموعه متغیرهای موجود) و اکشن های مجاز (مثلا حرکت به جلو ، حرکت به عقب و …) ، یک تصمیم را می گیرد که در دفعات اول، این تصمیم می تواند کاملاً تصادفی باشد و به ازای هر اکشن یا رفتاری که بروز می دهد، سیستم یک فیدبک یا بازخورد یا امتیاز به او میدهد و از روی این فیدبک، ماشین متوجه میشود که تصمیم درست را اتخاذ کرده است یا نه که در دفعات بعد در آن موقعیت ، همان اکشن را تکرار کند یا اکشن و رفتار دیگری را امتحان کند.  با توجه به وابسته بودن حالت و رفتار فعلی به حالات و رفتارهای قبلی، فرآیند تصمیم گیری مارکوف ، یکی از مثالهای این گروه از الگوریتم ها می تواند باشد . الگوریتم های شبکه های عصبی هم می توانند ازین دسته به حساب آیند. منظور از کلمه تقویت شونده در نام گذاری این الگوریتم ها هم اشاره به مرحله فیدبک و بازخورد است که باعث تقویت و بهبود عملکرد برنامه و الگوریتم می شود .

نمونه ای از دسته بندی کلاسیک الگوریتم های یادگیری ماشین که بر اساس وجود یا عدم وجود عامل کنترل کننده (ناظر) و گسسته و پیوسته بودن متغیرها انجام شده است را می توانید در این شکل ببینید :

ml_algorithms

الگوریتم های اصلی و رایج یادگیری ماشین

در این سری از مقالات به آموزش الگوریتم های زیر با نمونه کدهای لازم و مثالهای تشریحی خواهیم زد :

  1. رگرسیون خطی
  2. رگرسیون لجستیک
  3. درخت تصمیم
  4. SVM
  5. Naive Bayes
  6. KNN
  7. K-Means
  8. جنگل تصادفی
  9. الگوریتم های کاهش ابعاد
  10. Gradient Boost & Ada Boost

 

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

Time limit is exhausted. Please reload CAPTCHA.