Data Intensive Computing Platforms

Amir H. Payberah

amir@sics.se

SICS/KTH

Big Data

Big Data

everyone talks about it, nobody really knows how to do it, ev-
eryone thinks everyone else is doing it, so everyone claims they are

doing it.
- Dan Ariely

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 3 /115

Big Data

Big data is data that exceeds the processing capacity of conventional
database systems. The data is too big, moves too fast, or doesn't
fit the strictures of your database architectures. To gain value from
this data, you must choose an alternative way to process it.

- O'Reilly

, OREILLY’

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 4 /115

Big Data

database systems. The data is too big, oo fast, or doesn't
fit the strictures of your database ﬂtec ures. To gain value from
this data, you must choose\q& native way to process it.

,(OO - O'Reilly

Big data is data that exceeds the processing g f conventional

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 4 /115

BN
Big Data

Big data is the data characterized by 3 attributes: volume, variety
and velocity.

- IBM

-
Big Data

Big data is the data characterized

and velocity. 60((\

Ao |
m@‘l utes: volume, variety

- IBM

™

Aug. 9, 2016 5 /115

-
Big Data

Big data is the data characterized by 4 key attributes: volume,
variety, velocity and value.

- Oracle

ORACLE

 AmirH. Paybersh (SICS) Dota Intensive Computing Platforms Aug. 90,2016 6 /115

-
Big Data

Big data is the data characterize&%bﬁkey attributes: volume,
variety, velocity and value. ,LN

Q)\) - Oracle
ORACLE

 AmirH. Paybersh (SICS) Dota Intensive Computing Platforms Aug. 90,2016 6 /115

Let's Define Big Data
In Simple Words

Big Data

DevOps Borat
g;’ @DEVOPS_BORAT

[
=%

Small Data is when is fit in RAM.
Big Data is when is crash because
is not fit in RAM.

2/6/13, 8:22 AM

« 13 K eoee

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 8 /115

The Four Dimensions of Big Data

> Volume: data size
Volume Velocity
_ _ -_ —
> Velocity: data generation rate -_:
» Variety: data heterogeneity H o e
L
Variety Veracity
» This 4th V is for Vacillation:

Veracity/Variability/Value

Big Data Sources

s GR\y7 B> |

‘n\(ed < El““‘“

@ Vit
‘{
o\\’ cw g

tu-“h\"er @ ‘(‘\\‘—“r
] 3 one
a @4 = ue\p* Y

- =
e ST]
% eSS
255 chG)C,,,_‘G,U,; cgcrm?f«
e T LA TGy CAG e S TG

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 10 / 115

N
How Much Data?

v

Google: 100 PB/day process, 15000 PB storage
EBay: 100 PB/day, 90 PB storage

Baidu: 10-100 PB/day, 2000 PB storage
Facebook: 600 TB/day, 300 PB storage
Spotify: 2.2 TB/day, 100 PB storage

v

v

v

v

[https://followthedata.wordpress.com/2014/06/24/data-size-estimates]

Aug. 9,2016 11 /115

Two Driving Factors

» Cloud computing

» Open source communities

Aug. 9, 2016 12 /115

Who Uses Big Data?

v

Banking

» Government

» Manufacuring & &
L)
» Education \._/f‘) \9 n
N/
» Health care & 1'|~|:‘|/

How To Store and Process
Big Data?

Scale Up vs. Scale Out (1/2)

» Scale up or scale vertically: adding resources to a single node in a
system.

» Scale out or scale horizontally: adding more nodes to a system.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 15 / 115

-
Scale Up vs. Scale Out (2/2)

» Scale up: more expensive than scaling out.

» Scale out: more challenging for fault tolerance and software devel-
opment.

 AmirH. Paybersh (SICS) Dota Intensive Computing Platforms Aug. 0,2016 16 /115

S4 distributed stream
computing platform ‘\‘

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 17 / 115

cassandra

Google Cloud plarform

-
Three Main Layers: Big Data Stack

Data Processing Layer

Storage Layer

Resource Management Layer

 AmirH. Paybersh (SICS) Dota Intensive Computing Platforms Aug. 0,2016 18 /115

Resource Management Layer

Data Processing Layer

Storage Layer

Resource Management Layer

Resource Management Tools

 AmirH. Paybersh (SICS) Dota Intensive Computing Platforms Aug. 0,2016 10 /115

Storage Layer

Data Processing Layer

Storage Layer

Cache
Operational Store

Logging System

Distributed File System

Resource Management Layer

Processing Layer

Data Processing Layer

Higher Interface

Processing Engines

Metadata

Storage Layer

Resource Management Layer

Spark Processing Engine

Sporf(?

Spark Spark _
Streaming GraphX MLIib

Spark

Flink Processing Engine

Flink ML Gelly

Batch Stream
Processing Processing

Scala

Scala

v

Scala: scalable language

v

A blend of object-oriented and functional programming

v

Runs on the Java Virtual Machine

v

Designed by Martin Odersky at EPFL

! Scala

 AmirH. Paybersh (SICS) Dota Intensive Computing Platforms Aug. 0,2016 25 /115

Functional Programming Languages

» Functions are first-class citizens:
 Defined anywhere (including inside other functions).
¢ Passed as parameters to functions and returned as results.
e Operators to compose functions.

Scala Variables

» Values: immutable

» Variables: mutable

» Scala data types:
* Boolean, Byte, Short, Char, Int, Long, Float, Double, String

If ... Else

Functions

Anonymous Functions

» Lightweight syntax for defining functions.

-
Higher-Order Functions

Second-order First-order function

function (user code)

def apply(f: Int => String, v: Int) = f£(v)
def layout(x: Int) = "[" + x.toString() + "]"

println(apply(layout, 10))

~ Amir H. Payberah (SICS) ~ Data Intensive Computing Platforms Aug. 9,2016 32 /115

Collections (1/2)

» Array: fixed-size sequential collection of elements of the same type

.
Collections (1/2)

» Array: fixed-size sequential collection of elements of the same type

» List: sequential collection of elements of the same type

.
Collections (1/2)

» Array: fixed-size sequential collection of elements of the same type

» List: sequential collection of elements of the same type

» Set: sequential collection of elements of the same type without
duplicates

Collections (2/2)

» Map: collection of key/value pairs

.
Collections (2/2)

» Map: collection of key/value pairs

» Tuple: A fixed number of items of different types together

Functional Combinators

» map: applies a function over each element in the list

» flatten: it collapses one level of nested structure

> flatMap: map + flatten

» foreach: it is like map but returns nothing

|
Classes and Objects

Classes and Objects

» A singleton is a class that can have only one instance.

[
Case Classes and Pattern Matching

» Case classes are used to store and match on the contents of a class.

» They are designed to be used with pattern matching.

» You can construct them without using new.

Data Intensive Computing

Motivation

» We have a huge text document.

» Count the number of times each distinct word appears in the file

Motivation

» We have a huge text document.
» Count the number of times each distinct word appears in the file

» If the file fits in memory: words(doc.txt) | sort | uniq -c

N

Motivation

» We have a huge text document.
» Count the number of times each distinct word appears in the file
» If the file fits in memory: words(doc.txt) | sort | uniq -c

» If not?

N

NN
MapReduce Programming Model

» words(doc.txt) | sort | uniq -c

NN
MapReduce Programming Model

» words(doc.txt) | sort | uniq -c

» Sequentially read a lot of data.

Map Shuffle Reduce
A

NN
MapReduce Programming Model

» words(doc.txt) | sort | uniq -c
» Sequentially read a lot of data.

» Map: extract something you care about.

Map Shuffle Reduce
A

NN
MapReduce Programming Model

» words(doc.txt) | sort | uniq -c
» Sequentially read a lot of data.
» Map: extract something you care about.

» Group by key: sort and shuffle.

Map Shuffle Reduce
A

NN
MapReduce Programming Model

» words(doc.txt) | sort | uniq -c

v

Sequentially read a lot of data.

v

Map: extract something you care about.

v

Group by key: sort and shuffle.

v

Reduce: aggregate, summarize, filter or transform.

Map Shuffle Reduce
A

NN
MapReduce Programming Model

» words(doc.txt) | sort | uniq -c

v

Sequentially read a lot of data.

v

Map: extract something you care about.

v

Group by key: sort and shuffle.

v

Reduce: aggregate, summarize, filter or transform.

v

Write the result. Map Shuffle Reduce

MapReduce Dataflow

» map function: processes data and generates a set of intermediate
key/value pairs.

» reduce function: merges all intermediate values associated with the
same intermediate key.

Map Shuffle Reduce
A

fllllll—‘Oéll
|||||r—O<:"
|||||P—O<:"

I
Word Count in MapReduce

» Consider doing a word count of the following file using MapReduce:

Hello World Bye World
Hello Hadoop Goodbye Hadoop

I
Word Count in MapReduce - map

» The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

» The map function output is:

(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

I
Word Count in MapReduce - shuffle

» The shuffle phase between map and reduce phase creates a list of
values associated with each key.

» The reduce function input is:

(Bye, (1))
(Goodbye, (1))
(Hadoop, (1, 1))
(Hello, (1, 1))
(World, (1, 1))

I
Word Count in MapReduce - reduce

» The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

» The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)
(Hello, 2)
(World, 2)

The Word Count Mapper

B
The Word Count Reducer

The Word Count Driver

Spark

Motivation (1/4)

» Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

N
Input Output

Motivation (1/4)
» Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

» Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

N
Input Output

Motivation (1/4)

» Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

» Benefits of data flow:

can automatically recover from failures.

» E.g., MapReduce

Input

N
Output

runtime can decide where to run tasks and

Aug. 9,2016 50 /115

Motivation (2/4)

» MapReduce programming model has not been designed for complex
operations, e.g., data mining.

Input Output
(W—®
(™) (O—®
©

_/ ~—

.
Motivation (3/4)

» Very expensive (slow), i.e., always goes to disk and HDFS.

HDFS HDFS HDFS HDFS HDFS
1 Read - Write [~ Read f—— Read
Iter. 1

Write
- - -

Input

.
Motivation (4/4)

» Extends MapReduce with more operators.
» Support for advanced data flow graphs.

» In-memory and out-of-core processing.

(D—®
O~

| Hadoop |1 Spark |

.
Spark vs. MapReduce (1/2)

HDFS HDFS HDFS HDFS HDFS

] Read Write [———] Read Write [——— Read
- - -

Input

.
Spark vs. MapReduce (1/2)

HDFS HDFS HDFS HDFS HDFS

] Read Write [———] Read Write [——— Read
- - -

Input

3
o & 1 &

Input

.
Spark vs. MapReduce (2/2)

|

Resultsl

!

Resultsl

|

Resultsl

\

.
Spark vs. MapReduce (2/2)

|

Resultsl

\

Resultsl

|

Resultsl

\

Results1
J

I

Resultsl
\/_

Input

Resultsl
— —

Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Solution

Resilient Distributed Datasets (RDD) J

.
Resilient Distributed Datasets (RDD) (1/2)

» A distributed memory abstraction.

» Immutable collections of objects spread across a cluster.
e Like a LinkedList <MyObjects>

.
Resilient Distributed Datasets (RDD) (2/2)

» An RDD is divided into a number of partitions, which are atomic
pieces of information.

» Partitions of an RDD can be stored on different nodes of a cluster.

NSNS
Spark Programming Model

» A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

NSNS
Spark Programming Model

» A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

» Operators are higher-order functions that execute user-defined func-
tions in parallel.

-
Spark Programming Model

» A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

» Operators are higher-order functions that execute user-defined func-
tions in parallel.

» Two types of RDD operators: transformations and actions.

Aug. 9, 2016 59 /115

I
RDD Operators (1/2)

» Transformations: lazy operators that create new RDDs.

» Actions: lunch a computation and return a value to the program or
write data to the external storage.

RDD Operators (2/2)

map(f:T=U)

filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()

RDD[T] = RDD[U]

RDD[T] = RDD[T]

RDD[T] = RDD[U]

RDD[T] = RDD[T] (Deterministic sampling)
RDD[(K, V)] = RDD[(K, Seq[V])]

reduceByKey(f : (V,V) = V) RDDI[(K, V)] = RDD[(K, V)]
Transformations union() (RDD[T],RDD[T]) = RDDIT]
Jjoin() (RDDI(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K; (Seq[V], Seq[W]))]
crossProduct() (RDDI[T],RDD[U]) = RDD[(T, U)]
mapValues(f: V= W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() RDD[T] = Long
collect() RDDIT] = Seq[T]
Actions reduce(f : (T,T)=T) RDD[T]=T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Amir H. Payberah (SICS)

Data Intensive Computing Platforms

Aug. 9, 2016

61 / 115

I
RDD Transformations - Map

» All pairs are independently processed.

AR AR
}

I
RDD Transformations - Map

» All pairs are independently processed.

AR AR
}

RDD Transformations - Reduce

- jmm

» Pairs with identical key are grouped. -;I-_I_:::_-E-:i
. [ieimel ¥

» Groups are independently processed. | E:::E

RDD Transformations - Reduce

» Pairs with identical key are grouped.

» Groups are independently processed.

RDD Transformations - Join

» Performs an equi-join on the key.

-]
» Join candidates are independently pro- :*
cessed. m

RDD Transformations - Join

» Performs an equi-join on the key.

» Join candidates are independently pro-
cessed.

Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

I
Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

» Return an array with the first n elements of the RDD.

I
Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

» Return an array with the first n elements of the RDD.

» Return the number of elements in the RDD.

I
Basic RDD Actions (2/2)

» Aggregate the elements of the RDD using the given function.

I
Basic RDD Actions (2/2)

» Aggregate the elements of the RDD using the given function.

» Write the elements of the RDD as a text file.

I
SparkContext

» Main entry point to Spark functionality.

» Available in shell as variable sc.

» Only one SparkContext may be active per JVM.

Creating RDDs

» Turn a collection into an RDD.

BN
Creating RDDs

» Turn a collection into an RDD.

» Load text file from local FS, HDFS, or S3.

-
Example 1

val textFile = sc.textFile("hdfs://...")

val words = textFile.flatMap(line => line.split(" "))
val ones = words.map(word => (word, 1))
val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

textFile (RDD words (RDD) ones (RDD)

HDFS Hello (Hello, 1)
World (World, 1)
Bye (Bye, 1)
- - World (World, 1)
Hello (Hello, 1)
Hadoop (Hadoop, 1)

counts (RDD) HDFS

(Hello, 2)
(World, 2)

(Bye, 1)
(Hadoop, 2)
(Goodbye, 1)

Goodbye (Goodbye, 1)
Hadoop (Hadoop, 1)

Hello World Bye World
Hello Hadoop Goodbye Hadoop

Aug. 9, 2016 69 / 115

I
Example 2

I
Example 2

Spark Execution Model

» A Spark application consists of a driver program that runs the user’s
main function and executes various parallel operations on a cluster.

Lineage
file: | panthatsile
» Lineage: transformations used to build _ Filtered Dataset
sics: func = _.contains(...)
an RDD.

» RDDs are stored as a chain of objects cachedsics:
capturing the lineage of each RDD.

Mapped Dataset
func=_=>1

ones:

val file = sc.textFile("hdfs://...")

val sics = file.filter(_.contains("SICS"))
val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_+_)

 AmirH. Paybersh (SICS) Dota Intensive Computing Platforms Aug 92016 72 /115

Spark SQL

Spark and Spark SQL

User Programs
(Java, Scala, Python)

v v v
Spark SQL DataFrame API ‘

JDBC Console

‘ Catalyst Optimizer ‘

+ h 4
Spark

‘ Resilient Distributed Datasets ‘

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 74 / 115

DataFrame

» A DataFrame is a distributed collection of rows

» Homogeneous schema.

» Equivalent to a table in a relational database.

|
Adding Schema to RDDs

» Spark + RDD: functional transformations on partitioned collections
of opaque objects.

» SQL + DataFrame: declarative transformations on partitioned col-
lections of tuples.

RDD

partition

S
—
S

Aug. 9,2016 76 /115

Creating DataFrames

» The entry point into all functionality in Spark SQL is the
SQLContext.

» With a SQLContext, applications can create DataFrames from an
existing RDD, from a Hive table, or from data sources.

DataFrame Operations (1/2)

» Domain-specific language for structured data manipulation.

DataFrame Operations (2/2)

» Domain-specific language for structured data manipulation.

BN
Running SQL Queries Programmatically

» Running SQL queries programmatically and returns the result as a
DataFrame.

» Using the sql function on a SQLContext.

Converting RDDs into DataFrames

» Inferring the schema using reflection.

// Define the schema using a case class.
case class Person(name: String, age: Int)

// Create an RDD of Person objects and register it as a table.
val people = sc.textFile(...).map(_.split(","))

.map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable ("people")

// SQL statements can be Tun by using the sql methods provided by sqlContext.
val teenagers = sqlContext
.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are DataFrames.

teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

teenagers.map(t => "Name: " + t.getAs[String] ("name")).collect()
.foreach(println)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 81 /115

Spark Streaming

Motivation

» Many applications must process large streams of live data and pro-
vide results in real-time.

e Wireless sensor networks

e Traffic management applications

e Stock marketing

¢ Environmental monitoring applications

* Fraud detection tools

Stream Processing Systems

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

Stream Processing Systems

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

» Stream Processing Systems (SPS): data-in-motion analytics
e Processing information as it flows, without storing them persistently.

L
DBMS vs. SPS (1/2)

» DBMS: persistent data where updates are relatively infrequent.

» SPS: transient data that is continuously updated.

.
DBMS vs. SPS (2/2)

» DBMS: runs queries just once to return a complete answer.

» SPS: executes standing queries, which run continuously and provide
updated answers as new data arrives.

NSNS
Core Idea of Spark Streaming

» Run a streaming computation as a series of very small and deter-
ministic batch jobs.

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic

batch jobs.

e Chop up the live stream into batches of X seconds.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in
batches.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in
batches.

* Discretized Stream Processing (DStream)

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the

underlying RDDs.

input data
stream

RDD @ time 1

Spark
|:> Streaming

RDD @ time 2

batches of
processed data

T

batches of
input data

Spark
| A |

RDD @time3 RDD @ time 4

DStream = -{

data from
timeOto1

_ | datafrom
time 1to 2

data from
time3to4

data from
time2to3

|__

L >

DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the
underlying RDDs.

input data batches of batches of
stream Spark input data Spark processed data
C——| streaming [[JCIC)| Engine |

RDD @tme1 RDD@tme2 RDD@tme3 RDD @ time4
_| datafom | | datafiom | _| datafiom | o
time 1to 2

time2to3 time3to4

DStream = =4 datafrom
timeOto1

lines from | _ | linesfrom
time 1to 2 time2to3

lines .| linesfrom | o finesfrom L
DStream time Oto 1 time 3to 4

flatMap
operation

words | wordsfrom | _
DStream time0to 1

words from | _ | words from
time 1to 2 time2to3

words from
-I time3to4 F >

 AmirH. Paybersh (SICS) Dota Intensive Computing Platforms Aug. 02016 80 /115

StreamingContext

» StreamingContext: the main entry point of all Spark Streaming
functionality.

» To initialize a Spark Streaming program, a StreamingContext object
has to be created.

Source of Streaming

» Two categories of streaming sources.

» Basic sources directly available in the StreamingContext API, e.g.,
file systems, socket connections,

» Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter,

DStream Transformations

» Transformations: modify data from on DStream to a new DStream.
» Standard RDD operations, e.g., map, join, ...

» DStream operations, e.g., window operations

NN
DStream Transformation Example

lines from
+ time3to4 F >

lines | linesfrom | _| linesfrom | _ | linesfrom
DStream timeOto 1 time 1t0 2 time 2to 3
flatMap

operation

words | wordsfrom | _| wordsfrom | _ | wordsfrom |_ | wordsfrom >
DStream time 0to 1 time 1to 2 time2to3 time 3to 4

I
Window Operations

» Apply transformations over a sliding window of data: window length
and slide interval.

time 1 time 2 time 3 time 4 time 5
S
original] e[H
DStream LQ'______'I_:_I ______ B
window-based
operation
windowed
DStream B o
window window window

attime 1 attime 3 attime 5

MapWithState Operation

» Maintains state while continuously updating it with new information.
» It requires the checkpoint directory.
» A new operation after updateStateByKey.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(
StateSpec.function(mappingFunc))

val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {
val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
state.update (sum)
(word, sum)

}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 95 / 115

Spark Streaming and DataFrame

val words: DStream[String]l = ...

words.foreachRDD { rdd =>
// Get the singleton instance of SULContext
val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)
import sqlContext.implicits._

// Convert RDD[String] to DataFrame
val wordsDataFrame = rdd.toDF("word")

// Register as table
wordsDataFrame.registerTempTable ("words")

// Do word count on DataFrame using SUL and print it
val wordCountsDataFrame =

sqlContext.sql("select word, count(*) as total from words group by word")
wordCountsDataFrame . show ()

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 96 / 115

GraphX

ulllll"m‘

\, SOUNDCLOUD

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 98 / 115

Introduction

» Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

» Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.

BN
Large Graph

Can we use platforms like MapReduce or Spark, which are based on data-parallel
model, for large-scale graph proceeding?

Spc)rl‘gZ

Result

Graph-Parallel Processing

v

Restricts the types of computation.

v

New techniques to partition and distribute graphs.

v

Exploit graph structure.

v

Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

SN
GraphL(ab\

Pregel

Data-Parallel vs. Graph-Parallel Computation (1/3)

Data-Parallel

Sporl‘gz

Graph-Parallel

Pregel Grapnlab' #a4

Property Graph

BN
Data-Parallel vs. Graph-Parallel Computation (2/3)

» Graph-parallel computation: restricting the types of computation to
achieve performance.

- |
Data-Parallel vs. Graph-Parallel Computation (2/3)

» Graph-parallel computation: restricting the types of computation to
achieve performance.

» But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Preprocessing Compute Post Proc.

@. @ Grapkfét;\ “?,

Dk

Compute

{ Initil | Subgraph | PageRank
! Graph 4

Data Intensive Computing Platforms Aug. 9, 2016 104 / 115

Data-Parallel vs. Graph-Parallel Computation (3/3)

S E

gé; ‘ - 1r”ﬂLab -~ Q%WI
G s G

» Moving between table and graph views of the same physical data.

» Inefficient: extensive data movement and duplication across the net-
work and file system.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 105 / 115

GraphX

» Unifies data-parallel and graph-parallel systems.
» Tables and Graphs are composable views of the same physical data.

» Implemented on top of Spark.

Table View GraphX Unified Graph View
Representation

.
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

Mahout/Hadoop 1B40
Naive Spark 54
Giraph 207
GraphX 68
GraphlLab | 22

200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for |0 iterations)

-
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

Mahout/Hadoop 1B40
Naive Spark 54
Giraph 207
GraphX 68
Graphlab | 22

0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for |0 iterations)

Raw Wikipedia Hyperlinks PageRank Top 20 Pages
——

||= % —
Spark Preprocess ompute Spark Post.

Spark
Giraph + Spark
GraphX
Graphlab + Spark] | | | | | |
0 200 400 600 800 1000 1200 1400 1600

Total Runtime (in Seconds)

Aug. 9, 2016 107 / 115

Property Graph

Property Graph

» Represented using two Spark RDDs: (3= - @,‘

e Edge collection: VertexRDD
e Vertex collection: EdgeRDD

Vertex Table

Edge Table

Srcld

Dstld

[e

~|o|w

|
Triplets

» The triplet view logically joins the vertex and edge properties yielding
an RDD[EdgeTriplet [VD, ED]].

Vertices: % Edges: Triplets:

NSNS
Example Property Graph (1/3)

Property Graph Vertex Table
14 Property (V)
ef o 3 (rxin, student)
;:f. = 7 (jgonzal, postdoc)
S (franklin, professor)
a 2 (istoica, professor)
o
E Edge Table
Srcd | Dsdd | Property (E)
3 7 Collaborator
e 5 3 Advisor
istoica 2 5 Colleague
prof. 5 7 Al

Example Property Graph (2/3)

val sc: SparkContext

// Create an RDD for the vertices
val users: VertexRDD[(String, String)] = sc.parallelize(
Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges
val relationships: EdgeRDD[String] = sc.parallelize(
Array(Edge (3L, 7L, "collab"), Edge (5L, 3L, "advisor"),
Edge (2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =
Graph (users, relationships, defaultUser)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 111 / 115

I
Example Property Graph (3/3)

Summary

Summary

Spcﬁ‘(z

Spark

Streaming GraphX MLIib

Questions?

