
Data Intensive Computing Platforms

Amir H. Payberah
amir@sics.se

SICS/KTH

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 1 / 115

Big Data

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 2 / 115

Big Data

... everyone talks about it, nobody really knows how to do it, ev-
eryone thinks everyone else is doing it, so everyone claims they are
doing it.

- Dan Ariely

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 3 / 115

Big Data

Big data is data that exceeds the processing capacity of conventional
database systems. The data is too big, moves too fast, or doesn’t
fit the strictures of your database architectures. To gain value from
this data, you must choose an alternative way to process it.

- O’Reilly

Too Many Words

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 4 / 115

Big Data

Big data is data that exceeds the processing capacity of conventional
database systems. The data is too big, moves too fast, or doesn’t
fit the strictures of your database architectures. To gain value from
this data, you must choose an alternative way to process it.

- O’ReillyToo Many Words

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 4 / 115

Big Data

Big data is the data characterized by 3 attributes: volume, variety
and velocity.

- IBM

Random Words

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 5 / 115

Big Data

Big data is the data characterized by 3 attributes: volume, variety
and velocity.

- IBM

Random Words

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 5 / 115

Big Data

Big data is the data characterized by 4 key attributes: volume,
variety, velocity and value.

- Oracle

Buzzwords

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 6 / 115

Big Data

Big data is the data characterized by 4 key attributes: volume,
variety, velocity and value.

- OracleBuzzwords

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 6 / 115

Let’s Define Big Data
In Simple Words

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 7 / 115

Big Data

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 8 / 115

The Four Dimensions of Big Data

I Volume: data size

I Velocity: data generation rate

I Variety: data heterogeneity

I This 4th V is for Vacillation:
Veracity/Variability/Value

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 9 / 115

Big Data Sources

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 10 / 115

How Much Data?

I Google: 100 PB/day process, 15000 PB storage

I EBay: 100 PB/day, 90 PB storage

I Baidu: 10-100 PB/day, 2000 PB storage

I Facebook: 600 TB/day, 300 PB storage

I Spotify: 2.2 TB/day, 100 PB storage

[https://followthedata.wordpress.com/2014/06/24/data-size-estimates]

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 11 / 115

Two Driving Factors

I Cloud computing

I Open source communities

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 12 / 115

Who Uses Big Data?

I Banking

I Government

I Manufacuring

I Education

I Health care

I ...

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 13 / 115

How To Store and Process
Big Data?

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 14 / 115

Scale Up vs. Scale Out (1/2)

I Scale up or scale vertically: adding resources to a single node in a
system.

I Scale out or scale horizontally: adding more nodes to a system.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 15 / 115

Scale Up vs. Scale Out (2/2)

I Scale up: more expensive than scaling out.

I Scale out: more challenging for fault tolerance and software devel-
opment.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 16 / 115

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 17 / 115

Three Main Layers: Big Data Stack

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 18 / 115

Resource Management Layer

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 19 / 115

Storage Layer

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 20 / 115

Processing Layer

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 21 / 115

Spark Processing Engine

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 22 / 115

Flink Processing Engine

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 23 / 115

Scala

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 24 / 115

Scala

I Scala: scalable language

I A blend of object-oriented and functional programming

I Runs on the Java Virtual Machine

I Designed by Martin Odersky at EPFL

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 25 / 115

Functional Programming Languages

I Functions are first-class citizens:
• Defined anywhere (including inside other functions).
• Passed as parameters to functions and returned as results.
• Operators to compose functions.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 26 / 115

Scala Variables

I Values: immutable

I Variables: mutable

var myVar: Int = 0

val myVal: Int = 1

I Scala data types:
• Boolean, Byte, Short, Char, Int, Long, Float, Double, String

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 27 / 115

If ... Else

var x = 30;

if (x == 10) {

println("Value of X is 10");

} else if (x == 20) {

println("Value of X is 20");

} else {

println("This is else statement");

}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 28 / 115

Loop

var a = 0

var b = 0

for (a <- 1 to 3; b <- 1 until 3) {

println("Value of a: " + a + ", b: " + b)

}

// loop with collections

val numList = List(1, 2, 3, 4, 5, 6)

for (a <- numList) {

println("Value of a: " + a)

}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 29 / 115

Functions

def functionName([list of parameters]): [return type] = {

function body

return [expr]

}

def addInt(a: Int, b: Int): Int = {

var sum: Int = 0

sum = a + b

sum

}

println("Returned Value: " + addInt(5, 7))

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 30 / 115

Anonymous Functions

I Lightweight syntax for defining functions.

var mul = (x: Int, y: Int) => x * y

println(mul(3, 4))

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 31 / 115

Higher-Order Functions

def apply(f: Int => String, v: Int) = f(v)

def layout(x: Int) = "[" + x.toString() + "]"

println(apply(layout, 10))

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 32 / 115

Collections (1/2)

I Array: fixed-size sequential collection of elements of the same type

val t = Array("zero", "one", "two")

val b = t(0) // b = zero

I List: sequential collection of elements of the same type

val t = List("zero", "one", "two")

val b = t(0) // b = zero

I Set: sequential collection of elements of the same type without
duplicates

val t = Set("zero", "one", "two")

val t.contains("zero")

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 33 / 115

Collections (1/2)

I Array: fixed-size sequential collection of elements of the same type

val t = Array("zero", "one", "two")

val b = t(0) // b = zero

I List: sequential collection of elements of the same type

val t = List("zero", "one", "two")

val b = t(0) // b = zero

I Set: sequential collection of elements of the same type without
duplicates

val t = Set("zero", "one", "two")

val t.contains("zero")

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 33 / 115

Collections (1/2)

I Array: fixed-size sequential collection of elements of the same type

val t = Array("zero", "one", "two")

val b = t(0) // b = zero

I List: sequential collection of elements of the same type

val t = List("zero", "one", "two")

val b = t(0) // b = zero

I Set: sequential collection of elements of the same type without
duplicates

val t = Set("zero", "one", "two")

val t.contains("zero")

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 33 / 115

Collections (2/2)

I Map: collection of key/value pairs

val m = Map(1 -> "sics", 2 -> "kth")

val b = m(1) // b = sics

I Tuple: A fixed number of items of different types together

val t = (1, "hello")

val b = t._1 // b = 1

val c = t._2 // c = hello

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 34 / 115

Collections (2/2)

I Map: collection of key/value pairs

val m = Map(1 -> "sics", 2 -> "kth")

val b = m(1) // b = sics

I Tuple: A fixed number of items of different types together

val t = (1, "hello")

val b = t._1 // b = 1

val c = t._2 // c = hello

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 34 / 115

Functional Combinators

I map: applies a function over each element in the list

val numbers = List(1, 2, 3, 4)

numbers.map(i => i * 2) // List(2, 4, 6, 8)

I flatten: it collapses one level of nested structure

List(List(1, 2), List(3, 4)).flatten // List(1, 2, 3, 4)

I flatMap: map + flatten

I foreach: it is like map but returns nothing

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 35 / 115

Classes and Objects

class Calculator {

val brand: String = "HP"

def add(m: Int, n: Int): Int = m + n

}

val calc = new Calculator

calc.add(1, 2)

println(calc.brand)

I A singleton is a class that can have only one instance.

object Test {

def main(args: Array[String]) { ... }

}

Test.main(null)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 36 / 115

Classes and Objects

class Calculator {

val brand: String = "HP"

def add(m: Int, n: Int): Int = m + n

}

val calc = new Calculator

calc.add(1, 2)

println(calc.brand)

I A singleton is a class that can have only one instance.

object Test {

def main(args: Array[String]) { ... }

}

Test.main(null)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 36 / 115

Case Classes and Pattern Matching

I Case classes are used to store and match on the contents of a class.

I They are designed to be used with pattern matching.

I You can construct them without using new.

case class Calc(brand: String, model: String)

def calcType(calc: Calc) = calc match {

case Calc("hp", "20B") => "financial"

case Calc("hp", "48G") => "scientific"

case Calc("hp", "30B") => "business"

case _ => "Calculator of unknown type"

}

calcType(Calc("hp", "20B"))

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 37 / 115

Data Intensive Computing

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 38 / 115

Motivation

I We have a huge text document.

I Count the number of times each distinct word appears in the file

I If the file fits in memory: words(doc.txt) | sort | uniq -c

I If not?

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 39 / 115

Motivation

I We have a huge text document.

I Count the number of times each distinct word appears in the file

I If the file fits in memory: words(doc.txt) | sort | uniq -c

I If not?

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 39 / 115

Motivation

I We have a huge text document.

I Count the number of times each distinct word appears in the file

I If the file fits in memory: words(doc.txt) | sort | uniq -c

I If not?

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 39 / 115

MapReduce Programming Model

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 40 / 115

MapReduce Programming Model

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 40 / 115

MapReduce Programming Model

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 40 / 115

MapReduce Programming Model

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 40 / 115

MapReduce Programming Model

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 40 / 115

MapReduce Programming Model

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 40 / 115

MapReduce Dataflow

I map function: processes data and generates a set of intermediate
key/value pairs.

I reduce function: merges all intermediate values associated with the
same intermediate key.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 41 / 115

Word Count in MapReduce

I Consider doing a word count of the following file using MapReduce:

Hello World Bye World

Hello Hadoop Goodbye Hadoop

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 42 / 115

Word Count in MapReduce - map

I The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

I The map function output is:

(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 43 / 115

Word Count in MapReduce - shuffle

I The shuffle phase between map and reduce phase creates a list of
values associated with each key.

I The reduce function input is:

(Bye, (1))

(Goodbye, (1))

(Hadoop, (1, 1))

(Hello, (1, 1))

(World, (1, 1))

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 44 / 115

Word Count in MapReduce - reduce

I The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

I The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)

(Goodbye, 1)

(Hadoop, 2)

(Hello, 2)

(World, 2)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 45 / 115

The Word Count Mapper

public static class MyMap extends Mapper<...> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

context.write(word, one);

}

}

}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 46 / 115

The Word Count Reducer

public static class MyReduce extends Reducer<...> {

public void reduce(Text key, Iterator<...> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

while (values.hasNext())

sum += values.next().get();

context.write(key, new IntWritable(sum));

}

}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 47 / 115

The Word Count Driver

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setMapperClass(MyMap.class);

job.setCombinerClass(MyReduce.class);

job.setReducerClass(MyReduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 48 / 115

Spark

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 49 / 115

Motivation (1/4)

I Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

I Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

I E.g., MapReduce

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 50 / 115

Motivation (1/4)

I Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

I Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

I E.g., MapReduce

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 50 / 115

Motivation (1/4)

I Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

I Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

I E.g., MapReduce

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 50 / 115

Motivation (2/4)

I MapReduce programming model has not been designed for complex
operations, e.g., data mining.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 51 / 115

Motivation (3/4)

I Very expensive (slow), i.e., always goes to disk and HDFS.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 52 / 115

Motivation (4/4)

I Extends MapReduce with more operators.

I Support for advanced data flow graphs.

I In-memory and out-of-core processing.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 53 / 115

Spark vs. MapReduce (1/2)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 54 / 115

Spark vs. MapReduce (1/2)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 54 / 115

Spark vs. MapReduce (2/2)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 55 / 115

Spark vs. MapReduce (2/2)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 55 / 115

Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Solution

Resilient Distributed Datasets (RDD)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 56 / 115

Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Solution

Resilient Distributed Datasets (RDD)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 56 / 115

Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.
• Like a LinkedList <MyObjects>

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 57 / 115

Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic
pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 58 / 115

Spark Programming Model

I A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

I Operators are higher-order functions that execute user-defined func-
tions in parallel.

I Two types of RDD operators: transformations and actions.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 59 / 115

Spark Programming Model

I A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

I Operators are higher-order functions that execute user-defined func-
tions in parallel.

I Two types of RDD operators: transformations and actions.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 59 / 115

Spark Programming Model

I A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

I Operators are higher-order functions that execute user-defined func-
tions in parallel.

I Two types of RDD operators: transformations and actions.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 59 / 115

RDD Operators (1/2)

I Transformations: lazy operators that create new RDDs.

I Actions: lunch a computation and return a value to the program or
write data to the external storage.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 60 / 115

RDD Operators (2/2)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 61 / 115

RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}

// selecting those elements that func returns true.

val even = squares.filter(_ % 2 == 0) // {4}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 62 / 115

RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}

// selecting those elements that func returns true.

val even = squares.filter(_ % 2 == 0) // {4}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 62 / 115

RDD Transformations - Reduce

I Pairs with identical key are grouped.

I Groups are independently processed.

val pets = sc.parallelize(Seq(("cat", 1), ("dog", 1), ("cat", 2)))

pets.groupByKey()

// {(cat, (1, 2)), (dog, (1))}

pets.reduceByKey((x, y) => x + y)

or

pets.reduceByKey(_ + _)

// {(cat, 3), (dog, 1)}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 63 / 115

RDD Transformations - Reduce

I Pairs with identical key are grouped.

I Groups are independently processed.

val pets = sc.parallelize(Seq(("cat", 1), ("dog", 1), ("cat", 2)))

pets.groupByKey()

// {(cat, (1, 2)), (dog, (1))}

pets.reduceByKey((x, y) => x + y)

or

pets.reduceByKey(_ + _)

// {(cat, 3), (dog, 1)}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 63 / 115

RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val visits = sc.parallelize(Seq(("h", "1.2.3.4"),

("a", "3.4.5.6"),

("h", "1.3.3.1")))

val pageNames = sc.parallelize(Seq(("h", "Home"),

("a", "About")))

visits.join(pageNames)

// ("h", ("1.2.3.4", "Home"))

// ("h", ("1.3.3.1", "Home"))

// ("a", ("3.4.5.6", "About"))

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 64 / 115

RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val visits = sc.parallelize(Seq(("h", "1.2.3.4"),

("a", "3.4.5.6"),

("h", "1.3.3.1")))

val pageNames = sc.parallelize(Seq(("h", "Home"),

("a", "About")))

visits.join(pageNames)

// ("h", ("1.2.3.4", "Home"))

// ("h", ("1.3.3.1", "Home"))

// ("a", ("3.4.5.6", "About"))

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 64 / 115

Basic RDD Actions (1/2)

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 65 / 115

Basic RDD Actions (1/2)

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 65 / 115

Basic RDD Actions (1/2)

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 65 / 115

Basic RDD Actions (2/2)

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y)

or

nums.reduce(_ + _) // 6

I Write the elements of the RDD as a text file.

nums.saveAsTextFile("hdfs://file.txt")

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 66 / 115

Basic RDD Actions (2/2)

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y)

or

nums.reduce(_ + _) // 6

I Write the elements of the RDD as a text file.

nums.saveAsTextFile("hdfs://file.txt")

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 66 / 115

SparkContext

I Main entry point to Spark functionality.

I Available in shell as variable sc.

I Only one SparkContext may be active per JVM.

// master: the master URL to connect to, e.g.,

// "local", "local[4]", "spark://master:7077"

val conf = new SparkConf().setAppName(appName).setMaster(master)

new SparkContext(conf)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 67 / 115

Creating RDDs

I Turn a collection into an RDD.

val a = sc.parallelize(Array(1, 2, 3))

I Load text file from local FS, HDFS, or S3.

val a = sc.textFile("file.txt")

val b = sc.textFile("directory/*.txt")

val c = sc.textFile("hdfs://namenode:9000/path/file")

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 68 / 115

Creating RDDs

I Turn a collection into an RDD.

val a = sc.parallelize(Array(1, 2, 3))

I Load text file from local FS, HDFS, or S3.

val a = sc.textFile("file.txt")

val b = sc.textFile("directory/*.txt")

val c = sc.textFile("hdfs://namenode:9000/path/file")

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 68 / 115

Example 1

val textFile = sc.textFile("hdfs://...")

val words = textFile.flatMap(line => line.split(" "))

val ones = words.map(word => (word, 1))

val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 69 / 115

Example 2

val textFile = sc.textFile("hdfs://...")

val sics = textFile.filter(_.contains("SICS"))

val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_ + _)

val textFile = sc.textFile("hdfs://...")

val count = textFile.filter(_.contains("SICS")).count()

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 70 / 115

Example 2

val textFile = sc.textFile("hdfs://...")

val sics = textFile.filter(_.contains("SICS"))

val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_ + _)

val textFile = sc.textFile("hdfs://...")

val count = textFile.filter(_.contains("SICS")).count()

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 70 / 115

Spark Execution Model

I A Spark application consists of a driver program that runs the user’s
main function and executes various parallel operations on a cluster.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 71 / 115

Lineage

I Lineage: transformations used to build
an RDD.

I RDDs are stored as a chain of objects
capturing the lineage of each RDD.

val file = sc.textFile("hdfs://...")

val sics = file.filter(_.contains("SICS"))

val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_+_)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 72 / 115

Spark SQL

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 73 / 115

Spark and Spark SQL

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 74 / 115

DataFrame

I A DataFrame is a distributed collection of rows

I Homogeneous schema.

I Equivalent to a table in a relational database.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 75 / 115

Adding Schema to RDDs

I Spark + RDD: functional transformations on partitioned collections
of opaque objects.

I SQL + DataFrame: declarative transformations on partitioned col-
lections of tuples.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 76 / 115

Creating DataFrames

I The entry point into all functionality in Spark SQL is the
SQLContext.

I With a SQLContext, applications can create DataFrames from an
existing RDD, from a Hive table, or from data sources.

val sc: SparkContext // An existing SparkContext.

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

val df = sqlContext.read.json(...)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 77 / 115

DataFrame Operations (1/2)

I Domain-specific language for structured data manipulation.

// Show the content of the DataFrame

df.show()

// age name

// null Michael

// 30 Andy

// 19 Justin

// Print the schema in a tree format

df.printSchema()

// root

// |-- age: long (nullable = true)

// |-- name: string (nullable = true)

// Select only the "name" column

df.select("name").show()

// name

// Michael

// Andy

// Justin

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 78 / 115

DataFrame Operations (2/2)

I Domain-specific language for structured data manipulation.

// Select everybody, but increment the age by 1

df.select(df("name"), df("age") + 1).show()

// name (age + 1)

// Michael null

// Andy 31

// Justin 20

// Select people older than 21

df.filter(df("age") > 21).show()

// age name

// 30 Andy

// Count people by age

df.groupBy("age").count().show()

// age count

// null 1

// 19 1

// 30 1

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 79 / 115

Running SQL Queries Programmatically

I Running SQL queries programmatically and returns the result as a
DataFrame.

I Using the sql function on a SQLContext.

val sqlContext = ... // An existing SQLContext

val df = sqlContext.sql("SELECT * FROM table")

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 80 / 115

Converting RDDs into DataFrames

I Inferring the schema using reflection.

// Define the schema using a case class.

case class Person(name: String, age: Int)

// Create an RDD of Person objects and register it as a table.

val people = sc.textFile(...).map(_.split(","))

.map(p => Person(p(0), p(1).trim.toInt)).toDF()

people.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.

val teenagers = sqlContext

.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are DataFrames.

teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

teenagers.map(t => "Name: " + t.getAs[String]("name")).collect()

.foreach(println)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 81 / 115

Spark Streaming

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 82 / 115

Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 83 / 115

Stream Processing Systems

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 84 / 115

Stream Processing Systems

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 84 / 115

DBMS vs. SPS (1/2)

I DBMS: persistent data where updates are relatively infrequent.

I SPS: transient data that is continuously updated.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 85 / 115

DBMS vs. SPS (2/2)

I DBMS: runs queries just once to return a complete answer.

I SPS: executes standing queries, which run continuously and provide
updated answers as new data arrives.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 86 / 115

Core Idea of Spark Streaming

I Run a streaming computation as a series of very small and deter-
ministic batch jobs.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 87 / 115

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 88 / 115

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 88 / 115

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 88 / 115

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 88 / 115

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 88 / 115

DStream

I DStream: sequence of RDDs representing a stream of data.

I Any operation applied on a DStream translates to operations on the
underlying RDDs.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 89 / 115

DStream

I DStream: sequence of RDDs representing a stream of data.

I Any operation applied on a DStream translates to operations on the
underlying RDDs.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 89 / 115

StreamingContext

I StreamingContext: the main entry point of all Spark Streaming
functionality.

I To initialize a Spark Streaming program, a StreamingContext object
has to be created.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 90 / 115

Source of Streaming

I Two categories of streaming sources.

I Basic sources directly available in the StreamingContext API, e.g.,
file systems, socket connections,

I Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter,

ssc.socketTextStream("localhost", 9999)

TwitterUtils.createStream(ssc, None)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 91 / 115

DStream Transformations

I Transformations: modify data from on DStream to a new DStream.

I Standard RDD operations, e.g., map, join, ...

I DStream operations, e.g., window operations

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 92 / 115

DStream Transformation Example

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 93 / 115

Window Operations

I Apply transformations over a sliding window of data: window length
and slide interval.

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _,

Seconds(30), Seconds(10))

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 94 / 115

MapWithState Operation

I Maintains state while continuously updating it with new information.

I It requires the checkpoint directory.

I A new operation after updateStateByKey.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint(".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(

StateSpec.function(mappingFunc))

val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {

val sum = one.getOrElse(0) + state.getOption.getOrElse(0)

state.update(sum)

(word, sum)

}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 95 / 115

Spark Streaming and DataFrame

val words: DStream[String] = ...

words.foreachRDD { rdd =>

// Get the singleton instance of SQLContext

val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)

import sqlContext.implicits._

// Convert RDD[String] to DataFrame

val wordsDataFrame = rdd.toDF("word")

// Register as table

wordsDataFrame.registerTempTable("words")

// Do word count on DataFrame using SQL and print it

val wordCountsDataFrame =

sqlContext.sql("select word, count(*) as total from words group by word")

wordCountsDataFrame.show()

}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 96 / 115

GraphX

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 97 / 115

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 98 / 115

Introduction

I Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

I Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 99 / 115

Large Graph

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 100 / 115

Can we use platforms like MapReduce or Spark, which are based on data-parallel

model, for large-scale graph proceeding?

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 101 / 115

Graph-Parallel Processing

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.

I Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 102 / 115

Data-Parallel vs. Graph-Parallel Computation (1/3)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 103 / 115

Data-Parallel vs. Graph-Parallel Computation (2/3)

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 104 / 115

Data-Parallel vs. Graph-Parallel Computation (2/3)

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 104 / 115

Data-Parallel vs. Graph-Parallel Computation (3/3)

I Moving between table and graph views of the same physical data.

I Inefficient: extensive data movement and duplication across the net-
work and file system.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 105 / 115

GraphX

I Unifies data-parallel and graph-parallel systems.

I Tables and Graphs are composable views of the same physical data.

I Implemented on top of Spark.

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 106 / 115

GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 107 / 115

GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 107 / 115

Property Graph

I Represented using two Spark RDDs:
• Edge collection: VertexRDD
• Vertex collection: EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 108 / 115

Triplets

I The triplet view logically joins the vertex and edge properties yielding
an RDD[EdgeTriplet[VD, ED]].

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 109 / 115

Example Property Graph (1/3)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 110 / 115

Example Property Graph (2/3)

val sc: SparkContext

// Create an RDD for the vertices

val users: VertexRDD[(String, String)] = sc.parallelize(

Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),

(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges

val relationships: EdgeRDD[String] = sc.parallelize(

Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),

Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user

val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =

Graph(users, relationships, defaultUser)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 111 / 115

Example Property Graph (3/3)

// Constructed from above

val userGraph: Graph[(String, String), String]

// Count all users which are postdocs

userGraph.vertices.filter((id, (name, pos)) => pos == "postdoc").count

// Count all the edges where src > dst

userGraph.edges.filter(e => e.srcId > e.dstId).count

// Use the triplets view to create an RDD of facts

val facts: RDD[String] = graph.triplets.map(triplet =>

triplet.srcAttr._1 + " is the " +

triplet.attr + " of " + triplet.dstAttr._1)

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 112 / 115

Summary

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 113 / 115

Summary

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 114 / 115

Questions?

Amir H. Payberah (SICS) Data Intensive Computing Platforms Aug. 9, 2016 115 / 115

