

Build	Your	Own	PaaS	with	Docker

Table	of	Contents

Build	Your	Own	PaaS	with	Docker

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Installing	Docker

What	is	Docker?

Docker	on	Ubuntu	Trusty	14.04	LTS

Upgrading	Docker	on	Ubuntu	Trusty	14.04	LTS

User	permissions

Docker	on	Mac	OS	X

Installation

Upgrading	Docker	on	Mac	OS	X

Docker	on	Windows

Installation

Upgrading	Docker	on	Windows

Docker	on	Amazon	EC2

Installation

Open	ports

Upgrading	Docker	on	Amazon	EC2

User	permissions

Displaying	Hello	World

Summary

2.	Exploring	Docker

The	Docker	image

The	Docker	container

The	Docker	command-line	interface

The	Docker	Registry	Hub

Browsing	repositories

Exploring	published	images

Summary

3.	Creating	Our	First	PaaS	Image

The	WordPress	image

Moving	from	the	defaults

Our	objective

Preparing	for	caching

Raising	the	upload	limit

Plugin	installation

Making	our	changes	persist

Hosting	image	sources	on	GitHub

Publishing	an	image	on	the	Docker	Registry	Hub

Automated	builds

Summary

4.	Giving	Containers	Data	and	Parameters

Data	volumes

Mounting	a	host	directory	as	a	data	volume

Mounting	a	data	volume	container

Backing	up	and	restoring	data	volumes

Creating	a	data	volume	images

Data	volume	image

Exposing	mount	points

The	Dockerfile

Hosting	on	GitHub

Publishing	on	the	Docker	Registry	Hub

Running	a	data	volume	container

Passing	parameters	to	containers

Creating	a	parameterized	image

Summary

5.	Connecting	Containers

Manually	connecting	containers

Exploring	the	contents	of	a	data	volume	container

Connecting	containers	using	Docker	Compose

Installing	Docker	Compose

Basic	Docker	Compose	commands

Service

Using	the	run	command

Using	the	scale	command

Setting	up	our	PaaS	with	Docker	Compose

Connecting	containers	using	Crane

Installing	Crane

Usage

Configuration

Summary

6.	Reverse	Proxy	Requests

Explaining	the	problem

Finding	a	solution

Implementing	the	solution

Implementation	with	HAProxy

Installing	HAProxy

Configuring	HAProxy

Adding	more	domains	to	HAProxy

Implementation	with	Nginx

Installing	Nginx

Configuring	Nginx

Adding	more	domains	to	Nginx

Automating	the	process	of	mapping	domains

Summary

7.	Deployment	on	Our	PaaS

The	problem	with	our	current	setup

The	tools/services	available

Dokku	–	Docker-powered	mini-Heroku

Installation

Creating	a	sample	Dokku	app

How	Dokku	works

The	receive	process

Dokku	plugins

Dokku	domains	plugin

Dokku-docker-options

Volume	plugin	for	Dokku

Dokku-link

MariaDB	plugin	for	Dokku

Setting	up	a	WordPress	app	with	Dokku

Starting	multiple	apps

Adding	a	domain	to	Dokku

More	notes	on	Dokku

Summary

8.	What’s	Next?

What	is	a	Twelve-Factor	app?

Flynn

Deis

Rocket

Orchestration	tools

Summary

Index

Build	Your	Own	PaaS	with	Docker

Build	Your	Own	PaaS	with	Docker
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	April	2015

Production	reference:	1010415

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-394-6

www.packtpub.com

http://www.packtpub.com

Credits
Author

Oskar	Hane

Reviewers

Donald	Simpson

Lawrence	Taylor

Commissioning	Editor

Sarah	Crofton

Acquisition	Editor

Rebecca	Youe

Content	Development	Editor

Merwyn	D’Souza

Technical	Editors

Narsimha	Pai

Mahesh	Rao

Copy	Editors

Dipti	Kapadia

Vikrant	Phadke

Project	Coordinator

Neha	Bhatnagar

Proofreaders

Ting	Baker

Simran	Bhogal

Indexer

Mariammal	Chettiyar

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Oskar	Hane	is	a	full	stack	developer,	with	15	years	of	experience	in	the	development	and
deployment	of	web	applications.	During	this	period,	he	mostly	worked	with	start-ups	and
small,	fast-moving	companies.	He	is	the	cofounder	of	several	companies	and	has	been
working	as	an	independent	contractor	for	the	past	few	years.	These	days,	Oskar	works
with	Neo4j,	the	world’s	leading	graph	database,	where	he	spends	most	of	his	time	on	the
frontend,	writing	JavaScript.

He	lives	in	Sweden	with	his	wife	and	daughter.	He	enjoys	programming	as	well	as	all
kinds	of	sports	and	outdoor	activities,	such	as	hunting	and	fishing.

About	the	Reviewers
Donald	Simpson	is	an	experienced	build	manager,	software	developer,	and	information
technology	consultant	based	in	Scotland,	UK.

He	specializes	in	helping	organizations	improve	the	quality	and	reduce	the	cost	of
software	development	through	the	adoption	of	continuous	integration	and	continuous
delivery	best	practices.

He	has	designed	and	implemented	fully	automated	code	and	environment	build	solutions
for	a	range	of	clients	and	Agile	projects.

You	can	find	out	more	about	Donald	on	his	website	(www.donaldsimpson.co.uk).

Lawrence	Taylor	is	armed	with	a	PhD	in	mathematics.	He	has	7	years	of	experience	in
developing	software	in	a	variety	of	sectors,	from	finance	to	travel.	Charred	by	his	number-
theoretic	past,	he	is	drawn	to	the	abstractions	and	techniques	required	to	design	and	build
extensible	software	systems.

http://www.donaldsimpson.co.uk

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Docker	is	an	open	source	project	with	a	high-level	API	that	provides	software	containers
to	run	processes	in	isolation.	Packaging	an	app	in	a	container	that	can	run	on	any	Linux
server	(as	well	as	on	OS	X	and	Windows)	helps	developers	focus	on	developing	the	app
instead	of	server	setups	and	other	DevOps	operations.

What	this	book	covers
Chapter	1,	Installing	Docker,	takes	you	through	the	Docker	installation	process	to	start	a
container.

Chapter	2,	Exploring	Docker,	gives	you	an	insight	into	how	Docker	works	and	the
terminology	used	and	introduces	public	images.

Chapter	3,	Creating	Our	First	PaaS	Image,	shows	you	how	to	create	your	own	custom
Docker	image	that	will	be	a	part	of	your	PaaS.

Chapter	4,	Giving	Containers	Data	and	Parameters,	teaches	you	about	the	data	storing
alternatives	available	and	how	to	pass	parameters	to	your	PaaS	containers.

Chapter	5,	Connecting	Containers,	shows	you	how	to	manually	connect	containers	in
order	to	form	a	complete	platform,	and	introduces	two	tools	that	give	you	more	control
over	multicontainer	platforms.

Chapter	6,	Reverse	Proxy	Requests,	explains	the	problem	and	provides	a	solution	to
having	multiple	containers	on	the	same	host,	where	more	than	one	host	should	be
reachable	on	the	same	port.

Chapter	7,	Deployment	on	Our	PaaS,	takes	you	through	the	process	of	deploying	code	to
your	PaaS.	Here,	you	learn	how	to	create	your	own	mini-Heroku	with	Dokku.

Chapter	8,	What’s	Next?,	introduces	a	few	projects	that	are	in	their	early	stages	and	look
promising	for	the	future	of	a	Docker	based	PaaS.

What	you	need	for	this	book
A	PC/laptop	running	OS	X,	Linux,	or	Windows
Internet	connection

Who	this	book	is	for
This	book	is	intended	for	those	who	want	to	learn	how	to	take	full	advantage	of	separating
services	into	module	containers	and	connecting	them	to	form	a	complete	platform.	You
may	have,	perhaps,	heard	of	Docker	but	never	installed	or	used	it;	or,	you	may	have
installed	it	and	run	a	full	stack	container,	not	separating	services	in	module	containers	that
connect.	In	either	case,	this	book	will	give	you	all	the	insights	and	knowledge	required	to
run	your	own	PaaS.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“After
some	dependent	images	are	downloaded,	we	should	be	able	to	see	our	running	container
when	we	execute	docker.ps.”

A	block	of	code	is	set	as	follows:

<!DOCTYPE	html>

<html	lang="en">

<head>

<meta	charset="utf-8">

<title>Hello</title>

</head>

<body>

<h1>First	edit!</h1>

</body>

</html>

Any	command-line	input	or	output	is	written	as	follows:

curl	-sSL	https://get.docker.com/ubuntu/	|	sudo	sh

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Open	the	Finder
window	and	navigate	to	your	Applications	folder;	locate	boot2docker	and	double-click
on	it.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Installing	Docker
In	this	chapter,	we	will	find	out	where	to	download	and	how	to	install	Docker	on	various
operating	systems.	Some	basic	Docker	commands	will	be	used	so	that	we	can	verify
whether	the	installation	was	successful	and	to	interact	with	Docker	for	the	very	first	time.

The	following	topics	are	covered	in	this	chapter:

What	is	Docker?
Docker	on	Ubuntu	Trusty	14.04	LTS
Docker	on	Mac	OS	X
Docker	on	Windows
Docker	on	Amazon	EC2

This	book	will	take	you	through	all	the	steps,	from	installing	Docker	to	running	your	own
Platform	as	a	Service	(PaaS)	so	that	you	can	push	your	code	without	having	to	think
about	infrastructure	or	server	provisioning.

The	theme	of	this	book	will	be	to	create	a	modular	web	application	using	an	isolated	web
server	and	a	database.

What	is	Docker?
On	Docker’s	website,	http://www.docker.com,	the	following	definition	is	provided	for
Docker:

“Docker	is	an	open	platform	for	developers	and	sysadmins	to	build,	ship,	and	run
distributed	applications.”

What	this	means	in	a	more	practical	sense	is	that	Docker	is	a	way	of	enclosing	services	in
isolated	environments,	called	containers,	so	that	they	can	be	packaged	with	all	they	need
in	terms	of	libraries	and	dependencies	and	the	developer	can	be	certain	that	the	service
will	run	wherever	Docker	runs.

http://www.docker.com

Docker	on	Ubuntu	Trusty	14.04	LTS
The	OS,	flavor	and	version,	where	it’s	easiest	to	install	Docker	is	in	Ubuntu	Trusty	14.04
LTS.	This	is	a	pretty	quick	task	since	we	can	use	the	built-in	package	manager	apt-get.

Note
Note	that	Docker	is	called	docker.io	here	and	just	docker	on	other	platforms	since
Ubuntu	(and	Debian)	already	has	a	package	named	docker.

First	we	open	a	terminal	and	execute	these	commands	one	by	one:

sudo	apt-get	update

sudo	apt-get	install	docker.io

source	/etc/bash_completion.d/docker.io

Here,	we	first	update	the	lists	of	the	packet	manager	apt-get	in	order	to	get	information
about	all	the	packages,	versions,	and	dependencies	that	are	available.	The	next	line
actually	installs	Docker,	and	after	that,	we	enable	Ubuntu	to	tab-complete	our	Docker
commands.

When	you’ve	done	this	without	errors,	run	sudo	docker.io	version	just	to	verify	that	it
works	as	expected.

Note
Note	that	this	installs	the	latest	released	Ubuntu	package	version,	which	might	not
necessarily	be	the	latest	released	Docker	version.

In	order	to	have	the	latest	version	from	an	alternative	Docker-maintained	repository,	we
can	execute	the	following	command:

curl	-sSL	https://get.docker.com/ubuntu/	|	sudo	sh

This	adds	an	alternative	repository	maintained	by	the	Docker	team	and	installs	Docker	for
you	as	a	much	more	updated	version	than	the	one	that	comes	via	the	Ubuntu	repository.
Note	that	the	Docker	package	is	named	lxc-docker	when	it	is	installed	this	way.	The
command	used	to	run	Docker	commands	is	still	docker.

Upgrading	Docker	on	Ubuntu	Trusty	14.04	LTS
To	check	and	download	upgrades,	all	you	have	to	do	is	to	execute	this	command	in	a
terminal:

sudo	apt-get	update	&&	sudo	apt-get	upgrade

User	permissions
For	convenience,	it’s	preferred	to	add	our	user	to	the	system’s	Docker	user	group	so	that
we	can	control	Docker	without	using	sudo.	This	gives	our	user	permission	to	execute
Docker	commands.

Replace	USER	with	your	username	before	you	run	the	code:

sudo	gpasswd	-a	USER	docker

You	might	have	to	log	out	and	log	in	again	for	it	to	work.	When	you	are	logged	back	in,
run	docker	ps	to	verify	that	there	are	no	permission	problems.

Note
More	detailed	information	can	be	found	in	the	official	installation	guide	at
https://docs.docker.com/installation/ubuntulinux/.

https://docs.docker.com/installation/ubuntulinux/

Docker	on	Mac	OS	X
To	be	able	to	use	Docker	on	Mac	OS	X,	we	have	to	run	the	Docker	service	inside	a	virtual
machine	(VM)	since	Docker	uses	Linux-specific	features	to	run.	We	don’t	have	to	get
frightened	by	this	since	the	installation	process	is	very	short	and	straightforward.

Installation
There	is	an	OS	X	installer	that	installs	everything	we	need,	that	is,	VirtualBox,
boot2docker,	and	Docker.

VirtualBox	is	a	virtualizer	in	which	we	can	run	the	lightweight	Linux	distribution,	and
boot2docker	is	a	virtual	machine	that	runs	completely	in	the	RAM	and	occupies	just	about
27	MB	of	space.

Note
The	latest	released	version	of	the	OS	X	installer	can	be	found	at
https://github.com/boot2docker/osx-installer/releases/latest.

Now,	let’s	take	a	look	at	how	the	installation	should	be	done	with	the	following	steps:

1.	 Download	the	installer	by	clicking	on	the	button	named	Boot2Docker-1.3.0.pkg	to
get	the	.pkg	file,	as	shown	in	the	following	screenshot:

2.	 Double-click	on	the	downloaded	.pkg	file	and	go	through	with	the	installation
process.

3.	 Open	the	Finder	window	and	navigate	to	your	Applications	folder;	locate
boot2docker	and	double-click	on	it.	A	terminal	window	will	open	and	issue	a	few
commands,	as	shown	here:

https://github.com/boot2docker/osx-installer/releases/latest

This	runs	a	Linux	VM,	named	boot2docker-vm,	that	has	Docker	pre-installed	in
VirtualBox.	The	Docker	service	in	the	VM	runs	in	daemon	(background)	mode,	and	a
Docker	client	is	installed	in	OS	X,	which	communicates	directly	with	the	Docker
daemon	inside	the	VM	via	the	Docker	Remote	API.

4.	 You	will	see	a	screen	similar	to	the	following	screenshot,	which	tells	you	to	set	some
environment	variables:

We	open	up	the	~/.bash_profile	file	and	paste	three	lines	from	our	output,	as
follows,	at	the	end	of	this	file:

export	DOCKER_HOST=tcp://192.168.59.103:2376

export.DOCKER_CERT_PATH=/Users/xxx/.boot2docker/certs/boot2docker-vm

export	DOCKER_TLS_VERIFY=1

The	reason	why	we	do	this	is	so	that	our	Docker	client	knows	where	to	find	the
Docker	daemon.	If	you	want	to	find	the	IP	in	the	future,	you	can	do	so	by	executing
the	boot2docker	ip	command.	Adding	the	preceding	lines	will	set	these	variables
every	time	a	new	terminal	session	starts.	When	you’re	done,	close	the	terminal
window.	Then,	open	a	new	window	and	type	echo	$DOCKER_HOST	to	verify	that	the
environment	variable	is	set	as	it	should	be.	You	should	see	the	IP	and	port	your
boot2docker	VM	printed.

5.	 Type	docker	version	to	verify	that	you	can	use	the	Docker	command.	An	output
that	looks	similar	to	the	last	few	lines	of	the	preceding	screenshot	will	mean	that	we
have	succeeded.

Upgrading	Docker	on	Mac	OS	X
Since	Docker	is	relatively	new,	there	could	be	a	lot	happening	in	every	update,	so	make
sure	that	you	check	for	updates	on	a	regular	basis.	From	time	to	time,	go	to	the	Mac	OS	X
installer	download	page	and	check	whether	there	is	an	upgrade	available.	If	there	is,
execute	these	commands	to	update	it:

boot2docker	stop

boot2docker	download

boot2docker	start

Docker	on	Windows
Just	as	we	have	to	install	a	Linux	virtual	machine	when	installing	Docker	in	OS	X,	we
have	to	do	the	same	in	Windows	in	order	to	run	Docker	because	of	the	Linux	kernel
features	that	Docker	builds	on.	OS	X	has	a	native	Docker	client	that	directly
communicates	with	the	Docker	daemon	inside	the	virtual	machine,	but	there	isn’t	one
available	for	Windows	yet.	There	is	a	native	Windows	version	of	the	Docker	client
coming,	but	it	will	not	be	available	by	the	time	this	book	is	published.

Installation
There	is	a	Windows	installer	that	installs	everything	we	need	in	order	to	run	Docker.	For
this,	go	to	https://github.com/boot2docker/windows-installer/releases/latest.

Now,	let’s	take	a	look	at	how	the	installation	should	be	done	with	the	help	of	the	following
steps:

1.	 Click	on	the	docker-install.exe	button	to	download	the	.exe	file,	as	shown	in	the
following	screenshot:

2.	 When	the	download	is	complete,	run	the	downloaded	installer.	Follow	through	the
installation	process,	and	you	will	get	VirtualBox,	msysGit,	and	boot2docker	installed.

3.	 Go	to	your	Program	Files	folder	and	click	on	the	newly	installed	boot2docker	to
start	using	Docker.	If	you	are	prompted	to	enter	a	passphrase,	just	press	Enter.

4.	 Type	docker	version	to	verify	that	you	can	use	the	Docker	command.

https://github.com/boot2docker/windows-installer/releases/latest

Upgrading	Docker	on	Windows
A	new	software	changes	often	and	to	keep	boot2docker	updated,	invoke	these	commands:

boot2docker	stop

boot2docker	download

boot2docker	start

Docker	on	Amazon	EC2
Throughout	this	book,	I	will	use	an	Amazon	EC2	instance,	and	since	it	is	a	superb	place	to
host	your	PaaS,	I	will	recommend	that	you	do	the	same.

EC2	stands	for	Elastic	Compute	Cloud,	and	it	is	an	infrastructure	type	of	service.	Amazon
EC2	offers	virtual	servers	that	are	created	and	available	within	a	minute	of	ordering	them.

Note
Amazon	has	instances	named	t[x].micro	that	you	can	use	for	free	for	750	hours	per
month.	You	can	read	more	about	them	at	http://aws.amazon.com/free.

Amazon	has	its	own	Linux	named	Amazon	Linux	AMI	that	can	be	used	to	run	Docker.

http://aws.amazon.com/free

Installation
Let’s	see	how	the	installation	is	done	with	the	following	steps:

1.	 Create	an	account	at	http://aws.amazon.com	and	go	to	Amazon’s	Create	EC2
Instance	Wizard	at	https://console.aws.amazon.com/ec2/v2/home?
#LaunchInstanceWizard.

The	next	steps	are	shown	in	the	screenshot	as	follows:

2.	 Click	on	Community	AMIs	in	the	menu	on	the	left-hand	side	and	select	the	latest
amzn-ami-pv.	Make	sure	that	you	select	the	pv	version	and	not	the	hvm	version	so	that
you	have	a	virtualization	that	is	more	stable	and	has	less	overhead,	as	shown	here:

3.	 When	it’s	time	to	choose	an	instance	type,	you	can	choose	t1.micro	or	t2.micro	for
now	if	they	are	available.	The	micro	instances	are	very	limited	in	their	performance,
but	since	they	are	available	in	the	free	usage	tier	in	some	regions	and	this	is	not	for	a
live	site	at	the	moment,	we	can	use	them.	Click	on	Next:	Configure	Instance	Details
and	then	click	on	the	Review	and	Launch	button,	as	shown	in	the	following
screenshot:

http://aws.amazon.com
https://console.aws.amazon.com/ec2/v2/home?#LaunchInstanceWizard

4.	 Verify	all	the	details	on	the	summary	page	and	click	on	the	Launch	Instance	button.
5.	 You	will	be	prompted	whether	you	want	to	use	an	existing	key-pair	or	create	a	new

one.	If	this	is	your	first	time	creating	an	Amazon	EC2	instance,	you	will	want	to
create	a	new	key-pair.	This	makes	it	easy	to	securely	connect	to	your	instances.

6.	 Download	the	new	key-pair,	move	it	to	your	~/.ssh/	folder,	and	remove	the	.txt
extension.

7.	 It’s	also	important	to	set	the	correct	user	permissions	on	the	file	or	SSH	will	refuse	to
use	it.

In	Linux	or	on	a	Mac,	this	is	how	the	terminal	command	to	do	this	looks:

mv	~/Downloads/amz.pem.txt	~/.ssh/amz.pem

chmod	600	~/.ssh/amz.pem

On	Windows,	save	the	key	anywhere	and	use	a	tool	such	as	PuTTYgen	to	convert	it
to	a	.ppk	file,	so	you	can	use	it	when	connecting	using	PuTTY.

8.	 You	will	be	prompted	to	choose	a	security	group	for	your	instance.	Pick	the	default
one	since	this	won’t	be	a	production	server.	When	it’s	time	to	use	a	production	server,
we	might	want	to	add	more	security	to	our	instance.

9.	 Now	we’re	up	and	running!	Let’s	connect	to	it.	Click	on	the	View	Instances	button
and	select	your	newly	created	instance	in	the	list,	as	shown	here:

10.	 In	the	bottom	of	the	screen,	you	can	see	some	information	about	the	instance.	You
should	be	looking	for	the	public	DNS	information.	This	is	how	it	should	look:

ec2-54-187-234-27.us-west-2.compute.amazonaws.com

11.	 On	a	Linux	or	Mac,	open	a	terminal	and	connect	to	it:

ssh	ec2-user@ec2-54-187-234-27.us-west-2.compute.amazonaws.com	-i	

~/.ssh/amz.pem

The	screenshot	is	displayed	as	follows:

We	use	the	ec2-user	user	that	is	the	default	user	for	Amazon’s	Linux	instances,	and
amz.pem	is	the	key	we	downloaded	earlier.	Replace	the	URL	with	your	public	DNS
information	from	the	last	step.

When	asked	whether	you	want	to	continue	because	of	an	unknown	host,	type	yes.

On	Windows,	use	PuTTY	and	make	sure	that	you	have	specified	the	converted
private	key	from	step	4	in	the	PuTTY	Auth	tab.

12.	 Once	you	are	connected	to	the	instance,	install	Docker:

sudo	yum	update

sudo	yum	install	-y	docker

sudo	service	docker	start

13.	 To	test	whether	it’s	working	as	expected,	type	docker	version	and	make	sure	there’s
no	error.	You	should	see	a	few	lines	with	the	client	version,	API	version,	and	so	on.

Open	ports
Amazon’s	default	security	policy	is	to	block	the	default	ports	used	to	expose	services	from
Docker,	so	we	have	to	change	this.

We	go	back	to	the	EC2	dashboard	and	click	on	the	Security	Groups	option	in	the
menu
Select	the	security	group	that	your	EC2	instance	uses	and	select	the	Inbound	tab
Docker	uses	ports	in	a	range	from	49000	-	50000,	so	we	add	a	rule	for	this,	as	shown
in	the	following	screenshot:

Upgrading	Docker	on	Amazon	EC2
Upgrading	an	Amazon	Linux	AMI	instance	is	as	easy	as	it	is	for	Ubuntu.	Type	sudo	yum
update	and	confirm	whether	there’s	an	update	waiting.	This	command	will	list	all	the
available	updates	and	upon	your	confirmation,	install	them.

User	permissions
Docker	requires	commands	to	be	run	by	users	in	the	docker	user	group.	For	convenience,
we	add	our	user	to	the	Docker	group	so	that	we	can	control	Docker	without	using	sudo:

sudo	gpasswd	-a	ec2-user	docker

You	might	have	to	log	out	and	log	in	again	for	it	to	work.	When	you	are	logged	back	in,
run	docker	ps	to	verify	that	there	are	no	permission	problems.	You	should	see	a	row	of
capitalized	words,	such	as	CONTAINER	ID	IMAGE	COMMAND	CREATED
STATUS	PORTS	NAMES.

Displaying	Hello	World
Now	that	we	have	Docker	running	on	a	machine	of	our	choice,	it’s	time	to	make	Docker
work	for	us.	Here	are	a	few	very	basic	commands	that	we	can	use	for	some	basic
interaction	with	the	Docker	daemon.

In	the	next	chapter,	all	the	concepts	and	phrases	used	in	Docker	will	be	explained:

docker	ps:	This	lists	the	running	containers
docker	ps	-a:	This	lists	all	the	containers,	both	running	and	exited
docker	images:	This	lists	local	(downloaded	and	locally	created)	images
docker	run:	This	will	launch	a	new	instance	container	from	an	image
docker	stop:	This	is	used	to	stop	a	container

Let’s	try	the	first	one	in	the	screenshot	shown	below:

As	expected,	we	have	nothing	running	yet.

Launching	a	container	is	as	easy	as	docker	run	[image]	[command].	If	the	image	doesn’t
exist	locally,	Docker	will	download	it	from	the	Docker	Registry	Hub	and	launch	your
container	when	it’s	downloaded.

The	following	steps	are	displayed	as	follows:

Type	the	following	command	in	a	terminal	to	launch	a	container	that	prints	the	string
Hello,	let	me	out	of	here	and	then	exits:

docker	run	oskarhane/hello	echo	"Hello,	let	me	out	of	here"

This	is	not	very	useful,	but	we	just	ran	a	command	in	Ubuntu	inside	the	container.

If	we	type	docker	ps	again,	we	can	see	that	we	still	have	no	running	containers	since	we
exited	the	one	we	just	started	straightaway.	Try	using	docker	ps	-a	instead,	and	try
docker	images.

Summary
In	this	chapter,	we	learned	that	Docker	can	be	used	on	most	operating	systems	and	that	the
installation	process	varies	a	lot	depending	on	the	OS.	We	had	our	first	interaction	with	the
Docker	daemon	and	launched	our	first	container	in	Docker.	Even	though	all	the	container
did	was	write	a	command,	that’s	how	easy	it	is	to	start	and	run	something	inside	a	guest
operating	system.

We	have	also	introduced	the	theme	that	shows	what	this	book	is	all	about,	running	a
multicontainer	web	app	of	a	web	server	container	and	a	MySQL	container:	your	own
PaaS.

In	the	next	chapter,	we	will	further	explore	Docker,	its	terminology,	and	the	community
around	it.

Chapter	2.	Exploring	Docker
After	reading	this	chapter,	you	will	find	yourself	more	comfortable	talking	about	and
using	Docker.	The	following	topics	will	be	covered	here:

The	Docker	image
The	Docker	container
The	Docker	command-line	interface
The	Docker	Registry	Hub

You	will	find	these	topics	important	when	building	your	PaaS,	and	you	will	use	and
interact	with	all	of	them	throughout	this	book.

The	Docker	image
In	the	beginning,	it	can	be	hard	to	understand	the	difference	between	a	Docker	image	and
a	Docker	(or	Linux)	container.

Imagine	that	our	Linux	kernel	is	layer	zero.	Whenever	we	run	a	Docker	image,	a	layer	is
put	on	top	of	our	kernel	layer.	This	image,	layer	one,	is	a	read-only	image	and	cannot	be
changed	or	cannot	hold	a	state.

A	Docker	image	can	build	on	top	of	another	Docker	image	that	builds	on	top	of	another
Docker	image	and	so	on.	The	first	image	layer	is	called	a	base	image,	and	all	other	layers
except	the	last	image	layer	are	called	parent	images.	They	inherit	all	the	properties	and
settings	of	their	parent	images	and	add	their	own	configuration	in	the	Dockerfile.

Docker	images	are	identified	by	an	image	ID,	which	is	a	64-character	long	hexadecimal
string,	but	when	working	with	images,	we	will	almost	never	reference	an	image	by	this	ID
but	use	the	image	names	instead.	To	list	all	our	locally	available	Docker	images,	we	use
the	docker	images	command.	Take	a	look	at	the	following	image	to	see	how	the	images
are	listed:

Images	can	be	distributed	with	different	versions	for	us	to	choose	from,	and	the
mechanism	for	this	is	called	tags.	The	preceding	screenshot	illustrates	this	with	the	neo4j
image	that	has	a	latest	and	a	2.1.5	tag.	This	is	how	the	command	used	to	pull	a	specific
tag	looks:

docker	pull	ubuntu:14.04

docker	pull	ubuntu:12.02

The	Docker	container
A	Docker	container	is	created	the	moment	we	execute	docker	run	imagename.	A
writeable	layer	is	added	on	top	of	all	the	image	layers.	This	layer	has	processes	running	on
the	CPU	and	can	have	two	different	states:	running	or	exited.	This	is	the	container.	When
we	start	a	container	with	the	Docker	run	command,	it	enters	the	running	state	until	it,	for
some	reason,	stops	by	itself	or	is	stopped	by	us	and	then	enters	the	exited	state.

When	we	have	a	container	running,	all	the	changes	we	make	to	its	filesystem	are
permanent	between	start	and	stop.	Remember	that	changes	made	to	the	container’s
filesystem	are	not	written	to	the	underlying	Docker	image.

We	can	start	as	many	instances	of	running	containers	as	we	want	from	the	same	image;
they	will	all	live	side	by	side,	totally	separated	by	each	other.	All	the	changes	we	make	to
a	container	are	limited	to	that	container	only.

If	changes	are	made	to	the	container’s	underlying	image,	the	running	container	is
unaffected	and	there	is	no	autoupdate	happening.	If	we	want	to	update	our	container	to	a
newer	version	of	its	image,	we	have	to	be	careful	and	make	sure	that	we	have	set	up	the
data	structure	in	a	correct	way,	otherwise	we	have	the	risk	of	losing	all	the	data	in	the
container.	Later	in	this	book,	I	will	show	you	where	to	keep	important	data	without	the
risk	of	losing	it.

The	corresponding	screenshot	is	shown	as	follows:

A	64-character	long	hexadecimal	string	called	container	ID	identifies	Docker	containers.
This	ID	can	be	used	when	interacting	with	the	container,	and	depending	on	how	many
containers	we	have	running,	we	will	usually	only	have	to	type	the	first	four	characters	of
the	container	ID.	We	can	use	the	container	name	as	well,	but	it’s	often	easier	to	type	the
beginning	of	the	ID.

The	Docker	command-line	interface
The	command	line	interface	is	where	we	communicate	with	the	daemon	using	the	Docker
command.	The	Docker	daemon	is	the	background	process	that	receives	the	commands	that
are	typed	by	us.

In	the	previous	chapter,	we	ran	a	few	Docker	commands	to	start	and	stop	containers	as
well	as	to	list	containers	and	images.	Now,	we	are	going	to	learn	a	few	more	that	will	help
us	when	handling	containers	for	our	PaaS,	as	follows:

docker	logs	<container-ID|name>:	Everything	that	is	written	to	the	STDOUT
containers	will	end	up	in	the	file	that	can	be	accessed	via	this	command.	This	is	a
very	handy	way	to	output	information	from	within	a	container,	as	shown	here:

docker	export	<container-ID|name>:	If	you	have	a	container	that	holds	data	that
you	want	to	export,	this	is	the	command	to	be	used.	This	creates	a	tar	archive	and
sends	it	to	STDOUT:

docker	cp	CONTAINER:PATH	HOSTPATH:	If	you	don’t	want	the	whole	file	system	from
a	container	but	just	one	directory	or	a	file,	you	can	use	docker	cp	instead	of	export,
as	shown	in	the	following	screenshot:

The	Docker	Registry	Hub
One	important	part	of	Docker’s	popularity	is	its	community	and	the	ease	with	which	you
can	share,	find,	and	extend	Docker	images.	The	central	place	for	this	is	the	Docker
Registry	Hub	that	can	be	found	at	https://hub.docker.com/.

https://hub.docker.com/

Browsing	repositories
Here,	we	can	search	and,	in	many	ways,	browse	for	image	repositories	to	find	exactly
what	we’re	after.	If	we	take	a	look	at	the	popular	ones,	we	will	see	what	others	are	using
the	most.

If	we	click	on	the	Ubuntu	repository,	we	will	see	lots	of	information	about	the	image,	the
tags	that	are	available,	users’	comments,	the	number	of	stars	it	has,	and	when	it	was
updated.

The	screenshot	is	displayed	as	follows:

If	we	click	on	a	tag	in	the	main	view,	we’ll	see	something	called	the	Dockerfile.	This	is
the	image	description	that	runs	when	an	image	is	being	created.	Further	in	this	book,	we’ll
write	our	own.

If	you’re	interested	in	an	image	in	the	Docker	hub,	I	recommend	that	you	read	the
Information/README	as	well	as	the	other	users’	comments.	Often,	you	will	find	valuable
information	there	that	will	help	you	to	choose	the	right	image	and	show	you	how	to	run	it
in	the	way	the	maintaining	developer	intended	to.

Often,	you	will	find	images	that	almost	fit	your	needs	since	most	images	are	quite	general,
but	as	a	developer,	you	might	need	specific	settings	or	services	installed.

Exploring	published	images
Take	the	official	WordPress	Docker	image,	for	example
(https://registry.hub.docker.com/_/wordpress/).	You’ll	find	it	on	the	Docker	hub’s	browse
page	or	you	can	search	for	it.

Let’s	forget	about	these	shortcomings	for	now	and	see	what	the	information	page	says:

This	image	reads	the	settings	from	the	Docker	container’s	environment	variables.	This

https://registry.hub.docker.com/_/wordpress/

means	that	image	has	to	be	started	with	the	environment	variables	injected	using	the
docker	run	–e	command,	or	you	can	--link	another	container	to	it	that	injects	these
variables.	We’ll	discuss	container	linking	more	later	in	this	book.

Let’s	see	what	we’ll	get	if	we	were	to	pull	this	image.	Click	on	the	link	to	the	Dockerfile
in	the	apache	directory:

FROM	php:5.6-apache

RUN	a2enmod	rewrite

#	install	the	PHP	extensions	we	need

RUN	apt-get	update	&&	apt-get	install	-y	libpng12-dev	libjpeg-dev	&&	rm	-rf	

/var/lib/apt/lists/*	\

				&&	docker-php-ext-configure	gd	--with-png-dir=/usr	--with-jpeg-dir=/usr	

\

				&&	docker-php-ext-install	gd

RUN	docker-php-ext-install	mysqli

VOLUME	/var/www/html

ENV	WORDPRESS_VERSION	4.1.1

ENV	WORDPRESS_UPSTREAM_VERSION	4.1.1

ENV	WORDPRESS_SHA1	15d38fe6c73121a20e63ccd8070153b89b2de6a9

#	upstream	tarballs	include	./wordpress/	so	this	gives	us	

/usr/src/wordpress

RUN	curl	-o	wordpress.tar.gz	-SL	https://wordpress.org/wordpress-

${WORDPRESS_UPSTREAM_VERSION}.tar.gz	\

				&&	echo	"$WORDPRESS_SHA1	*wordpress.tar.gz"	|	sha1sum	-c	-	\

				&&	tar	-xzf	wordpress.tar.gz	-C	/usr/src/	\

				&&	rm	wordpress.tar.gz

COPY	docker-entrypoint.sh	/entrypoint.sh

#	grr,	ENTRYPOINT	resets	CMD	now

ENTRYPOINT	["/entrypoint.sh"]

CMD	["apache2-foreground"]

Ok,	we	see	that	it	builds	on	Debian	Wheezy	and	installs	Apache2,	PHP5,	and	some	other
stuff.	After	that,	it	sets	a	bunch	of	environment	variables	and	then	downloads	WordPress.

We	see	a	few	lines	starting	with	the	command	COPY.	This	means	that	files	are	shipped	with
the	Docker	image	and	are	copied	to	the	inside	of	the	container	when	it’s	started.	This	is
how	the	docker-apache.conf	file	shipped	with	the	WordPress	image	looks:

<VirtualHost	*:80>

		DocumentRoot	/var/www/html

		<Directory	/var/www/html>

				AllowOverride	all

		</Directory>

</VirtualHost>

#	vim:	syntax=apache	ts=4	sw=4	sts=4	sr	noet

The	preceding	line	of	code	tells	Apache	where	to	look	for	files.

What	about	the	docker-entrypoint.sh	file?

The	ENTRYPOINT	keyword	tells	the	Docker	daemon	that	if	nothing	else	is	specified,	this
file	should	be	executed	whenever	the	container	is	run.	It	is	as	if	the	whole	container	is	an
executable	file.

If	we	take	a	look	at	what	is	present	inside	this	file,	we’ll	see	that	it	basically	sets	up	the
connection	to	the	MySQL	database	and	configures	.htaccess	and	WordPress:

#!/bin/bash

set	-e

if	[-z	"$MYSQL_PORT_3306_TCP"];	then

		echo	>&2	'error:	missing	MYSQL_PORT_3306_TCP	environment	variable'

		echo	>&2	'		Did	you	forget	to	--link	some_mysql_container:mysql	?'

		exit	1

fi

The	first	thing	that	is	done	is	to	check	whether	the	user	has	set	environment	variables	for
the	MySQL	connection.	If	not,	it	exits	and	writes	some	info	to	STDERR.

Why	don’t	you	try	and	see	whether	you	can	trigger	the	MySQL	error	that	writes	error:
missing	MYSQL_PORT_3306_TCP	environment	variable	to	the	STDERR,	as	follows:

docker	run	–-name	some-wordpress	–d	wordpress

The	--name	some-wordpress	command	names	the	container,	so	we	can	reference	it	by

this	name	later.	Also,	the	–d	argument	tells	the	container	to	run	in	detached	mode,	which
means	that	it	does	not	listen	to	commands	from	where	we	started	it	anymore.	The	last
wordpress	argument	is	the	name	of	the	Docker	image	we	want	to	run.

If	we	check	the	log	for	our	new	container,	we’ll	see	what	the	screenshot	shows	us:	the
expected	error	message.

Let’s	run	a	MySQL	container	and	see	whether	we	can	get	it	to	work.	Navigate	to
https://registry.hub.docker.com/_/mysql/	in	order	to	get	to	the	official	MySQL	docker
repository	on	the	Docker	registry	hub.	Here,	it	states	that	in	order	to	start	a	MySQL
instance,	we	need	to	invoke	docker	run	—name	some-mysql	-e
MYSQL_ROOT_PASSWORD=mysecretpassword	-d	mysql	in	the	shell.	Since	we	are
doing	this	for	educational	purposes	at	the	moment,	we	don’t	have	to	choose	a	strong	root
user	password.	After	some	dependent	images	are	downloaded,	we	should	be	able	to	see
our	running	container	when	we	execute	docker	ps.	If	we	do,	have	a	look	at	the
installation	log	by	running	docker	logs	some-mysql,	as	shown	here:

https://registry.hub.docker.com/_/mysql/

Great,	now	we	have	a	running	MySQL	container	that	is	needed	to	start	a	WordPress
instance.	Let’s	start	a	new	WordPress	instance	with	the	MySQL	link	in	place:

docker	run	--name	some-wordpress	--link	some-mysql:mysql	–p	80	-d	wordpress

The	--link	parameter	exposes	the	some-mysql	containers’	environment	variables,
interface,	and	exposed	ports	via	the	environment	variables	injected	to	the	some-wordpress
container.

To	open	a	port	that	can	be	reached	from	the	outside,	port	80	is	exposed	via	the	–p	80
parameter.

If	you	get	an	error	message	saying	Error	response	from	daemon:	Conflict,	The	name
some-wordpress	is	already	assigned	to	a11c101cacaf.,	you	have	to	delete	(or	rename)
that	container	to	be	able	to	assign	some-wordpress	to	a	container	again.	You	need	to	give
the	new	container	a	new	name	or	delete	the	old	(failing)	WordPress	container.	Invoke
docker	rm	some-wordpress	to	delete	the	old	container	using	the	desired	name.

When	you	have	the	container	running,	invoke	docker	ps	command	to	find	out	which	of
our	ports	was	assigned	to	the	container’s	private	port	80.

We	can	either	look	at	the	ports	column	in	the	container	list,	or	we	can	invoke	docker	port
some-wordpress	80	to	explicitly	find	it,	as	shown	here:

In	my	case,	it	was	port	49155.

Enter	your	Docker	hosts’	ip:port	in	your	web	browser	to	see	whether	you	can	reach	it.	If
you’re	on	your	local	computer	running	Windows	or	OS	X,	you	can	find	your	Docker	IP	by
invoking	boot2docker	ip.	If	you’re	on	a	local	Linux,	127.0.0.1	should	be	fine.

I’m	doing	this	on	Amazon	EC2,	so	I	have	to	go	to	the	EC2	Management	console	to	get	my
public	IP	or	public	DNS.

Point	your	web	browser	to	http://yourip:yourport	(in	my	case,	http://myamazon-
dns.com:49155)	and	you	should	be	presented	with	this:

Note
The	default	Amazon	AWS	security	policy	is	to	block	the	default	Docker	public	ports,	so
we	have	to	change	this	in	the	Security	Groups	section	in	the	EC2	dashboard.	See	the
Docker	on	Amazon	EC2	section	in	Chapter	1,	Installing	Docker,	for	how	to	do	this.

Wonderful,	it	works!

Summary
The	Docker	image	can	be	seen	as	a	read-only	template	for	containers,	specifying	what’s
supposed	to	be	installed,	copied,	configured,	and	exposed	when	a	container	is	started.

We	learned	more	about	how	we	can	interact	with	the	Docker	daemon	and	with	individual
Docker	containers	to	read	logs,	copy	files,	and	export	the	complete	filesystem.

The	Docker	hub	was	introduced	and	we	looked	at	what	the	official	WordPress	Docker
image	consisted	of	and	how	they	configured	the	OS	in	the	Dockerfile	as	well	as	in	an
ENTRYPOINT	file	to	some	extent.

We	downloaded	and	ran	the	WordPress	image	that	failed	as	expected,	and	we	fixed	it	by
linking	the	required	MySQL	container	to	it.

In	the	next	chapter,	we	will	create	a	Dockerfile	and	publish	a	Docker	image	to	the	Docker
registry	hub	so	that	we	have	a	way	to	get	our	customized	Docker	images	to	wherever	we
decide	to	place	our	PaaS.

Chapter	3.	Creating	Our	First	PaaS
Image
You	are	now	ready	to	write	your	own	Dockerfiles,	publish	them	to	the	Docker	Registry
Hub,	and	create	containers	for	them.	In	this	chapter	you	will:

Build	your	own	image	on	top	of	another
Host	your	Dockerfiles	in	your	GitHub	account
Publish	an	image	on	the	Docker	Registry	Hub

The	WordPress	image
For	this	project,	we	are	going	to	use	the	official	WordPress	Docker	image	as	a	base,	which
has	Apache2	as	its	web	server.

Note
If	you	plan	to	host	sites	with	a	lot	of	traffic,	I	would	recommend	using	an	image	based	on
Nginx	instead	of	Apache2	as	the	web	server.	I	have	had	great	success	running	WordPress
sites	with	Nginx	and	the	memcached	plugin,	WP-FFPC.	It	can	be	a	bit	tricky	to	set	up,	and
that’s	why	it’s	out	of	the	scope	of	this	book.

First	of	all,	let’s	run	a	MySQL	container	and	a	WordPress	container	and	link	to	them	to	see
what	happens:

docker	run	--name	some-mysql	-e	MYSQL_ROOT_PASSWORD=mysecretpassword	-d	

mysql

docker	run	--name	some-wordpress	--link	some-mysql:mysql	-d	-p	80	wordpress

The	–p	80	option	tells	Docker	to	expose	the	private	port	80	to	the	outer	world.	To	find	out
which	public	port	is	bound	to	the	private	port	80,	run	docker	ps	command	and	look	in	the
ports	column	or	invoke	the	docker	port	<container-ID|name>	80	command.

The	screenshot	is	shown	below:

In	my	case,	the	public	port	is	49154.	Enter	the	full	URL	in	the	form	of
http://public_ip:public_port	in	your	web	browser.	I’m	doing	this	on	an	Amazon	EC2
instance.	I	get	a	public	domain,	which	is	http://ec2-54-187-234-27.us-west-
2.compute.amazonaws.com:49154	in	my	case.

The	screenshot	is	displayed	below:

The	WordPress	installation	page	welcomes	us,	which	means	that	the	WordPress	and	the
MySQL	containers	are	working	properly.

Moving	from	the	defaults
Now	we	have	a	default	installation	of	WordPress	run	on	Apache2.	Some	WordPress
plugins	require	you	to	make	changes	to	the	web	server’s	configuration.	How	can	we	do
that?	What	if	we	want	to	edit	some	of	the	files	in	the	WordPress	directory?

The	first	thing	we	need	to	do	is	to	get	our	own	copy	of	the	official	WordPress	repository
so	that	we	can	explore	the	Dockerfile.	The	current	URL	that	is	used	to	get	the	repository	is
https://github.com/docker-library/wordpress.	Click	on	this	link	from	the	WordPress	repo
page	on	the	Docker	Registry	Hub.

You	can	clone,	fork,	or	just	download	the	source	for	this	Docker	image.	It	doesn’t	matter
how	you	get	it	because	we’re	not	going	to	use	it	later	on.	This	image	is	for	testing	and
exploring	purposes.	I	used	my	EC2	instance	to	do	this.

Open	the	file	in	any	text	editor	to	view	its	content.	If	you	are—like	me—using	the
terminal,	you	can	use	vi	apache/Dockerfile	to	open	it	in	the	vi	file	editor.	The	current
Dockerfile	for	the	official	WordPress	image	looks	like	this:

https://github.com/docker-library/wordpress

FROM	php:5.6-apache

RUN	a2enmod	rewrite

#	install	the	PHP	extensions	we	need

RUN	apt-get	update	&&	apt-get	install	-y	libpng12-dev	libjpeg-dev	&&	rm	-rf	

/var/lib/apt/lists/*	\

				&&	docker-php-ext-configure	gd	--with-png-dir=/usr	--with-jpeg-dir=/usr	

\

				&&	docker-php-ext-install	gd

RUN	docker-php-ext-install	mysqli

VOLUME	/var/www/html

ENV	WORDPRESS_VERSION	4.1.1

ENV	WORDPRESS_UPSTREAM_VERSION	4.1.1

ENV	WORDPRESS_SHA1	15d38fe6c73121a20e63ccd8070153b89b2de6a9

#	upstream	tarballs	include	./wordpress/	so	this	gives	us	

/usr/src/wordpress

RUN	curl	-o	wordpress.tar.gz	-SL	https://wordpress.org/wordpress-

${WORDPRESS_UPSTREAM_VERSION}.tar.gz	\

				&&	echo	"$WORDPRESS_SHA1	*wordpress.tar.gz"	|	sha1sum	-c	-	\

				&&	tar	-xzf	wordpress.tar.gz	-C	/usr/src/	\

				&&	rm	wordpress.tar.gz

COPY	docker-entrypoint.sh	/entrypoint.sh

#	grr,	ENTRYPOINT	resets	CMD	now

ENTRYPOINT	["/entrypoint.sh"]

CMD	["apache2-foreground"]

This	image	uses	the	php:5.6-apache	image	as	a	base	and	downloads	and	extracts
WordPress	4.1	to	/usr/src/wordpress.	Then	it	adds	an	ENTRYPOINT	and	starts	Apache2	in
the	foreground.

Our	objective
To	make	this	WordPress	image	useable	for	more	than	demo	purposes,	we	need	to	modify
the	Dockerfile	in	three	ways.	Our	objectives	are	as	follows:

Preparing	Apache	for	caching	(through	the	WP	Super	Cache	plugin)
Raising	the	upload	limit	in	both	PHP	and	Apache2
Installing	two	plugins:	WP	Super	Cache	and	WP	Mail	SMTP

Preparing	for	caching
There	are	two	small	steps	to	be	performed	to	obtain	website	caching	through	WP	Super
Cache—we	need	to	enable	the	mod_headers	and	mod_expires	modules	in	Apache2.

On	line	5	in	the	Dockerfile,	you	can	see	RUN	a2enmod	rewrite.	The	a2enmod	command
enables	modules	in	Apache2,	and	modules	are	disabled	by	the	a2dismod	command.
Enabling	our	desired	modules	is	as	easy	as	appending	them	to	that	line:

RUN	a2enmod	rewrite	expires	headers

We	make	those	edits,	build	a	new	image,	and	see	what	happens.	It	takes	a	long	time	to
build	these	images,	since	PHP	is	built	from	source.	What	we	are	looking	for	are	lines	that
state	that	our	modules	are	enabled.	They	will	show	up	for	just	a	few	seconds	in	the	build
process.

You	initiate	a	build	from	a	Dockerfile	by	executing	this:

docker	build	–t	mod-wp	.

The	–t	mod-wp	command	sets	the	name	of	our	new	image	to	mod-wp.

The	screenshot	is	shown	below:

The	build	should	run	through	the	whole	process	without	any	errors,	and	then	the
preparation	for	the	cache	plugin	is	done.

Raising	the	upload	limit
The	default	upload	size	is	limited	to	2	MB	by	PHP.	This	limit	is	too	low,	especially	since
blogging	from	mobile	phones	is	popular	and	the	size	of	a	mobile	phone	photo	or	video	is
often	bigger	than	this.	I	would	like	to	have	the	option	to	upload	videos	directly	on	my
blogs,	and	they	can	be	up	to	32	MB.

For	this	limit	to	be	raised,	we	need	to	change	the	limit	for	two	parameters	in	the	PHP
configuration	file:	upload_max_filesize	and	post_max_size.

Looking	at	the	php:5.6-Apache	image,	which	is	the	base	image	of	the	WordPress	image,
Dockerfile	we	see	that	it	runs	Debian	and	PHP	configuration	files	are	supposed	to	be	in
the	/usr/local/etc/php/conf.d/	directory.	This	means	that	if	we	add	a	file	to	that
directory,	it	should	get	read	in	and	parsed.

Note
The	Dockerfile	for	PHP	5.6	can	be	found	at	https://github.com/docker-
library/php/blob/master/5.6/Dockerfile.

To	verify	that	the	upload	limit	is	as	low	as	said	before,	I	started	and	installed	an
unmodified	WordPress	container.	Then	I	clicked	on	the	Add	new	media	button.

It	says	that	the	upload	limit	is	2	MB.

Let’s	add	a	configuration	file	named	upload-limit.ini	to	the	configuration	directory,	and
add	the	two	parameters	to	the	file.

https://github.com/docker-library/php/blob/master/5.6/Dockerfile

These	commands,	all	of	which	should	be	on	a	single	line,	are	added	to	our	Dockerfile	right
above	the	line	we	modified	when	preparing	Apache	for	caching:

RUN	touch	/usr/local/etc/php/conf.d/upload-limit.ini	\

								&&	echo	"upload_max_filesize	=	32M"	>>	

/usr/local/etc/php/conf.d/upload-limit.ini	\

								&&	echo	"post_max_size	=	32M"	>>	/usr/local/etc/php/conf.d/upload-

limit.ini

#Paste	above	this	line.

RUN	a2enmod	rewrite	expires	headers

Once	again,	build	the	image	to	ensure	that	no	errors	are	produced.	If	you	get	an	error
saying	that	the	image	name	already	exists,	you	can	delete	the	old	image	with	the	docker
rmi	mod-wp	command	or	change	the	name	to	mod-wp:latest,	which	will	update	the
image’s	tag	to	latest.

When	the	build	finishes,	we	run	a	new	container	from	the	new	image	to	check	out	what
the	WordPress	administration	interface	says.	We	can	run	a	container	from	our	new	image,
like	this:

docker	run	--name	some-mysql	-e	MYSQL_ROOT_PASSWORD=mysecretpassword	-d	

mysql

docker	run	--name	some-wordpress	--link	some-mysql:mysql	-d	-p	80	mod-

wp:latest

We	can	now	see	that	we	can	upload	bigger	files.	Just	to	verify,	if	you	upload	a	file	bigger
than	2	MB,	it	will	prove	that	the	limit	has	been	raised.

Plugin	installation
Here,	we	are	going	to	download	and	install	two	plugins	that	we	want	in	all	our	future
WordPress	sites.	All	the	tasks	for	these	plugins	will	be	done	in	the	entry	point	file,	since
we	have	to	edit	a	few	files	in	the	WordPress	installation.

The	first	plugin	is	WP	Super	Cache.	We	prepared	Apache2	for	this	earlier,	and	now	it’s
time	to	use	that.	With	this	plugin,	our	site	will	run	faster	and	demand	fewer	resources	from
our	host.

The	second	plugin	is	WP	Mail	SMTP,	with	the	help	of	which	WordPress	can	send
outgoing	e-mails.	This	container	does	not	(and	should	not)	include	a	mail	server.	With	this
plugin,	we	can	make	WordPress	send	e-mails	via	an	external	SMTP	(Gmail,	your	ISPs,	or
anything	else).

Note
Even	though	I	have	hosted	and	managed	my	own	mail	server	for	a	few	years	now,	it	is	a
hassle	with	keeping	it	up	to	date	and	managing	spam	filters	and	redundancy.	We’re	better
off	leaving	that	to	the	specialists.

All	plugins	will	be	downloaded	with	CURL	and	unpacked	with	unzip.	CURL	is	already
installed	but	unzip	is	not,	so	we	have	to	add	it	to	our	Dockerfile,	close	to	the	top	where	the
apt-get	install	command	is	running:

RUN	apt-get	update	&&	apt-get	install	-y	unzip	rsync	&&	rm	-r	

/var/lib/apt/lists/*

If	we	don’t	do	this,	we	will	get	error	messages	during	the	build	process.

Since	there	are	two	plugins	we	have	to	download,	extract,	and	activate,	we	will	create	a
function	in	the	docker-entrypoint.sh	file.

This	function	will	go	to	Wordpress’	plugin	site	and	look	for	the	download	URL	for	the
latest	version	of	the	plugin.	It	will	download	and	then	extract	it	to	the	plugin	folder	in	our
Wordpress	installation:

dl_and_move_plugin()	{

		name="$1"

		curl	-O	$(curl	-i	-s	"https://wordpress.org/plugins/$name/"	|	egrep	-o	

"https://downloads.wordpress.org/plugin/[^']+")

		unzip	-o	"$name".*.zip	-d	$(pwd)/wp-content/plugins

}

Now	that	we	have	the	function	there,	we	can	add	these	lines	near	the	end	of	the	file,	just
above	the	line	that	says	chown	–R	www-data:www-data	..:

dl_and_move_plugin	"wp-super-cache"

dl_and_move_plugin	"wp-mail-smtp"

Place	the	function	and	the	function	calls	close	to	the	bottom—in	the	docker-

entrypoint.sh	file,	just	above	the	exec	command.

We	will	build	the	image	again	and	start	a	container	so	that	we	can	verify	that	everything	is
working	as	we	want:

docker	build	–t	mod-wp:latest

This	will	take	a	while,	and	when	it’s	ready,	you	can	fire	up	a	MySQL	container	and	a	mod-
wp	container:

docker	run	--name	some-mysql	-e	MYSQL_ROOT_PASSWORD=mysecretpassword	-d	

mysql

docker	run	--name	some-wordpress	--link	some-mysql:mysql	-d	-p	80	mod-

wp:latest

If	you	get	an	error	that	tells	you	that	you	already	have	a	container	with	that	name,	either
remove	the	old	container	with	docker	rm	some-wordpress	or	use	another	name	for	the
new	container.

Get	the	port	by	invoking	docker	ps,	and	look	for	the	port	binding	to	port	80	on	the
WordPress	container.	Then	load	the	URL	into	your	browser.	This	time,	install	WordPress,
log	in,	and	go	to	the	plugins	page,	as	shown	in	the	following	screenshot:

This	looks	just	like	we	want	it	to!	Great!

Let’s	go	ahead	and	activate	and	set	up	these	plugins	just	to	verify	that	they	work.	Start
with	the	WP	Mail	SMTP	plugin.	I	will	use	my	Gmail	account	as	the	sender,	but	you	can
choose	which	SMTP	you	want.	Here	is	a	screenshot	showing	the	settings	for	Gmail:

From	the	bottom	of	this	page,	you	can	send	a	test	e-mail.	I	strongly	recommend	doing	this
because	Gmail	sometimes	blocks	new	SMTP	clients.	If	you	get	an	error	message	saying
Please	log	in	via	your	web	browser	and	then	try	again,	you’ve	triggered	that.	In	that
case,	you’ll	soon	get	an	e-mail	from	Google	explaining	suspicious	activity	and	asking	you
to	go	through	a	few	steps	to	make	it	work.	This	is	annoying	but	it’s	a	good	thing.

Now	let’s	move	on	to	the	WP	Super	Cache	plugin.	Go	ahead	and	activate	the	plugin	from
the	plugin	page.	Before	we	can	enable	it,	we	have	to	go	to	Settings	|	Permalinks,	check

the	Post	name	button,	and	save.

Then	go	to	Settings	|	WP	Super	Cache.

Click	on	Caching	On	and	then	on	Update	Status.	Now	click	on	the	Advanced	tab	and
enable	mod_rewrite	caching,	as	shown:

Scroll	down	to	the	Miscellaneous	section	and	check	the	boxes	that	are	shown	in	the
following	screenshot.	If	you	want	to	know	exactly	what	all	of	these	checkboxes	do,	you
can	refer	to	the	plugins’	documents.

When	you’ve	saved	this,	you’ll	get	a	notice	at	the	top	saying	that	you	need	to	update	the
rewrite	rules,	as	shown:

Scroll	down	the	page	and	click	on	the	Update	Mod_Rewrite	Rules	button	to	update	the
rewrite	rules,	as	shown:

The	cache	plugins’	status	should	now	be	green,	and	all	of	the	setup	should	be	done.	Since
we	are	logged	in	to	this	web	browser,	we	will	not	be	served	cached	pages.	This	is
important	to	know,	and	the	advantage	is	that	you	won’t	have	to	disable	the	whole	cache
plugin	just	to	see	the	uncached	version	of	your	site.	Open	another	web	browser	(not	just
another	window	or	tab	in	your	current	browser,	unless	you	are	using	incognito	or	private
mode)	and	go	to	your	WordPress	instance.	Click	on	the	Hello	World	title	on	the	post.	Go
back	to	the	start	page.	Click	on	the	title	again.	It	feels	pretty	fast,	right?

To	verify	that	it	works,	you	can	open	the	development	tools	in	your	browser.	Make	sure
that	you	don’t	have	caching	disabled	in	your	browser	when	the	development	tolls	are
open.	Click	on	the	Network	tab,	then	click	on	the	post’s	title	again,	and	then	inspect	that
call,	as	shown	in	the	following	screenshot:

This	is	just	what	we	wanted	to	see.	Great!

Making	our	changes	persist
Now	that	we	have	made	our	changes,	we	want	to	create	our	own	Dockerfile	to	build	on
top	of	the	official	WordPress	image.

This	is	what	the	Dockerfile	should	look	like:

FROM	wordpress:latest

RUN	apt-get	update	&&	apt-get	install	-y	unzip	&&	rm	-r	

/var/lib/apt/lists/*

RUN	touch	/usr/local/etc/php/conf.d/upload-limit.ini	\

								&&	echo	"upload_max_filesize	=	32M"	>>	

/usr/local/etc/php/conf.d/upload-limit.ini	\

								&&	echo	"post_max_size	=	32M"	>>	/usr/local/etc/php/conf.d/upload-

limit.ini

RUN	a2enmod	expires	headers

VOLUME	/var/www/html

COPY	docker-entrypoint.sh	/entrypoint.sh

ENTRYPOINT	["/entrypoint.sh"]

CMD	["apache2",	"-DFOREGROUND"]

Hosting	image	sources	on	GitHub
The	Docker	Registry	Hub	has	very	good	support	for	automatic	fetching	of	image	updates
from	both	Bitbucket	and	GitHub.	You	can	pick	whatever	you	want,	but	for	this	book,	I
will	use	GitHub.	I	have	accounts	on	both	services	and	they	are	both	excellent.

At	GitHub,	create	a	new	empty	repository	called	my-docker-images	and	add	an
appropriate	license	if	you	like.

Note
This	book	will	not	go	into	how	to	add	your	SSH	keys	to	GitHub	and	so	on.	There	are
excellent	guides	for	this	online.	GitHub	has	a	great	guide	at
https://help.github.com/articles/generating-ssh-keys/.

Let’s	create	a	branch	and	copy	our	files	for	the	modified	Docker	image	to	it.

Clone	the	repository	locally	so	that	you	can	add	files	to	it.	Make	sure	you	are	not	inside
your	wordpress-master	directory,	but	on	the	same	level	as	it	is:

git	clone	git@github.com:yourusername/my-docker-images.git

The	output	of	this	command	is	as	follows:

https://help.github.com/articles/generating-ssh-keys/

We’ll	execute	these	commands	one	by	one:

cd	my-docker-images

git	checkout	-b	wordpress

git	add	.

git	commit	–m	"Adding	new	files."

git	push	origin	wordpress

Go	to	your	GitHub	page	and	try	to	find	the	WordPress	branch.

For	every	new	Docker	image	we	want	to	create	and	publish	on	the	Docker	Registry	Hub,
we	need	to	create	a	new	branch	in	this	GitHub	repository.	If	you	have	a	lot	of	Docker
images	and	the	images	have	a	lot	of	versions,	you	might	want	to	consider	a	different
structure,	but	for	this	book,	this	approach	will	be	great!

All	files	are	in	place,	and	you	can	click	on	them	to	verify	that	the	contents	are	what	we
would	expect.

Publishing	an	image	on	the	Docker
Registry	Hub
If	you’re	not	a	member	of	the	Docker	Registry	Hub	(https://hub.docker.com),	now	is	the
time	to	register	so	that	you	can	publish	your	images	on	the	public	Docker	repository,
which	can	be	accessed	from	anywhere.

https://hub.docker.com

Automated	builds
When	you	add	a	repository,	you	should	choose	the	Automated	Build	option	so	that	you
can	fetch	code	from	GitHub	(or	Bitbucket),	as	shown	in	the	following	screenshot:

We’ll	connect	with	our	GitHub	account	and	select	the	repository	we	just	created	and
pushed	to	my-docker-images.

We	will	start	to	add	our	WordPress	image,	so	let’s	set	the	repository	name	to	wordpress	on
the	next	screen.	It’s	important	that	you	enter	this	name	correctly,	since	it	cannot	be
changed	later.

At	this	time,	we	will	just	use	one	tag	for	our	image—the	latest	tag.	Ensure	that	the	source:
Type	is	set	to	Branch	and	that	you’ve	entered	wordpress	as	its	name.

Choose	to	add	this	as	a	public	repository	and	check	the	active	checkbox.	This	means	that
if	you	push	any	updates	to	this	on	GitHub,	the	Registry	Hub	will	automatically	pull	it	and
publish	its	changes,	as	shown	in	the	following	screenshot:

The	Registry	Hub	will	now	pull	your	branch	and	try	to	build	your	Docker	image	to	verify
that	it	works.	You	can	head	over	to	the	Build	Details	tab	to	see	the	progress.	Since	it’s	the
official	WordPress	image	base,	it	should	go	pretty	fast	if	they	cache	the	images	on	their
build	servers.	If	not,	it	could	take	a	few	minutes,	since	PHP	is	compiled	from	source.

This	is	shown	in	the	following	screenshot:

Wow!	We’ve	just	published	an	image	on	the	Docker	Registry	Hub,	which	means	that
anyone	can	fetch	and	run	containers	on	top	of	it.	The	status	will	go	from	Building	to
Finished	when	the	image	is	published.

The	next	step	would	be	to	actually	pull	it	ourselves	to	verify	that	it	works	as	expected:

docker	pull	oskarhane/wordpress

docker	images

docker	run	--name	mysql	-e	MYSQL_ROOT_PASSWORD=mysecretpassword	-d	mysql

docker	run	--name	my-wordpress	--link	mysql:mysql	-d	-p	80	

oskarhane/wordpress

docker	ps

Open	your	web	browser	and	head	over	to	your	new	container.	You	should	be	presented
with	the	WordPress	setup	page.

Summary
In	this	chapter,	you	learned	quite	a	lot.	The	most	part	was	about	modifying	the	Dockerfile
and	ENTRYPOINT	files	in	order	to	get	the	Docker	image	that	we	wanted.	Bash	knowledge
and	programming	skills	are	very	convenient,	but	since	all	of	this	is	mostly	about
installation,	moving	files,	and	editing	settings	files,	very	basic	knowledge	can	be	enough.

GitHub	is	an	excellent	place	to	host	your	Docker	repositories,	and	it’s	very	easy	to	set	up	a
new	repository	to	get	started.	The	Docker	Registry	Hub	takes	your	GitHub	repository	and
lets	you	pick	a	branch.	This	branch	will	be	the	source	for	a	public	Docker	image	that
anyone	can	pull	and	use.

One	question	arises	though;	what	about	our	data?	It’s	trapped	inside	these	MySQL	and
WordPress	containers.	The	next	chapter	will	show	you	how	to	handle	your	data.

Chapter	4.	Giving	Containers	Data	and
Parameters
The	WordPress	data	inside	the	WordPress	container	and	the	database’s	data	inside	the
MySQL	container	may	not	be	what	we	want.	It’s	considered	good	practice	to	keep	the	data
outside	the	service	containers	because	you	may	want	to	separate	the	data	from	the	service
container.	In	this	chapter,	we’ll	cover	the	following	topics:

Data	volumes
Creating	a	data	volume	image
Host	on	GitHub
Publishing	on	Docker	Registry	Hub
Running	on	Docker	Registry	Hub
Passing	parameters	to	containers
Creating	a	parameterized	image

Data	volumes
There	are	two	ways	in	which	we	can	mount	external	volumes	on	our	containers.	A	data
volume	lets	you	share	data	between	containers,	and	the	data	inside	the	data	volume	is
untouched	if	you	update,	stop,	or	even	delete	your	service	container.

A	data	volume	is	mounted	with	the	–v	option	in	the	docker	run	statement:

docker	run	–v	/host/dir:container/dir

You	can	add	as	many	data	volumes	as	you	want	to	a	container,	simply	by	adding	multiple
–v	directives.

A	very	good	thing	about	data	volumes	is	that	the	containers	that	get	data	volumes	passed
into	them	don’t	know	about	it,	and	don’t	need	to	know	about	it	either.	No	changes	are
needed	for	the	container;	it	works	just	as	if	it	were	writing	to	the	local	filesystem.	You	can
override	existing	directories	inside	containers,	which	is	a	common	thing	to	do.	One	usage
of	this	is	to	have	the	web	root	(usually	at	/var/www	inside	the	container)	in	a	directory	at
the	Docker	host.

Mounting	a	host	directory	as	a	data	volume
You	can	mount	a	directory	(or	file)	from	your	host	on	your	container:

docker	run	–d	--name	some-wordpress	–v	/home/web/wp-one:/var/www	wordpress

This	will	mount	the	host’s	local	directory,	/home/web/wp-one,	as	/var/www	on	the
container.	If	you	want	to	give	the	container	only	the	read	permission,	you	can	change	the
directive	to	–v	/home/web/wp-one:/var/www:ro	where	the	:ro	is	the	read-only	flag.

It’s	not	very	common	to	use	a	host	directory	as	a	data	volume	in	production,	since	data	in
a	directory	isn’t	very	portable.	But	it’s	very	convenient	when	testing	how	your	service
container	behaves	when	the	source	code	changes.

Any	change	you	make	in	the	host	directory	is	direct	in	the	container’s	mounted	data
volume.

Mounting	a	data	volume	container
A	more	common	way	of	handling	data	is	to	use	a	container	whose	only	task	is	to	hold
data.	The	services	running	in	the	container	should	be	as	few	as	possible,	thus	keeping	it	as
stable	as	possible.

Data	volume	containers	can	have	exposed	volumes	via	the	Dockerfile’s	VOLUME	keyword,
and	these	volumes	will	be	mounted	on	the	service	container	while	using	the	data	volume
container	with	the	--volumes-from	directive.

A	very	simple	Dockerfile	with	a	VOLUME	directive	can	look	like	this:

FROM	ubuntu:latest

VOLUME	["/var/www"]

A	container	using	the	preceding	Dockerfile	will	mount	/var/www.	To	mount	the	volumes
from	a	data	container	onto	a	service	container,	we	create	the	data	container	and	then
mount	it,	as	follows:

docker	run	–d	--name	data-container	our-data-container

docker	run	–d	--name	some-wordpress	--volumes-from	data-container	wordpress

Backing	up	and	restoring	data	volumes
Since	the	data	in	a	data	volume	is	shared	between	containers,	it’s	easy	to	access	the	data
by	mounting	it	onto	a	temporary	container.	Here’s	how	you	can	create	a	.zip	file	(from
your	host)	from	the	data	inside	a	data	volume	container	that	has	VOLUME	["/var/www"]	in
its	Dockerfile:

docker	run	--volumes-from	data-container	-v	$(pwd):/host	ubuntu	zip	-r	

/host/data-containers-www	/var/www

This	creates	a	.zip	file	named	data-containers-www.zip,	containing	what	was	in	the.
www	data	container	from	var	directory.	This	.zip	file	places	that	content	in	your	current
host	directory.

Creating	a	data	volume	images
Since	our	data	volume	container	will	just	hold	our	data,	we	should	keep	it	as	small	as
possible	to	start	with	so	that	it	doesn’t	take	lots	of	unnecessary	space	on	the	server.	The
data	inside	the	container	can,	of	course,	grow	to	be	as	big	as	the	space	on	the	server’s	disk.
We	don’t	need	anything	fancy	at	all;	we	just	need	a	working	file	storage	system.

For	this	book,	we’ll	keep	all	our	data	(MySQL	database	files	and	WordPress	files)	in	the
same	container.	You	can,	of	course,	separate	them	into	two	data	volume	containers	named
something	like	dbdata	and	webdata.

Data	volume	image
Our	data	volume	image	does	not	need	anything	other	than	a	working	filesystem	that	we
can	read	and	write	to.	That’s	why	our	base	image	of	choice	will	be	BusyBox.	This	is	how
BusyBox	describes	itself:

“BusyBox	combines	tiny	versions	of	many	common	UNIX	utilities	into	a	single	small
executable.	It	provides	replacements	for	most	of	the	utilities	you	usually	find	in	GNU
fileutils,	shellutils,	etc.	The	utilities	in	BusyBox	generally	have	fewer	options	than
their	full-featured	GNU	cousins;	however,	the	options	that	are	included	provide	the
expected	functionality	and	behave	very	much	like	their	GNU	counterparts.	BusyBox
provides	a	fairly	complete	environment	for	any	small	or	embedded	system.”

That	sounds	great!	We’ll	go	ahead	and	add	this	to	our	Dockerfile:

FROM	busybox:latest

Exposing	mount	points
There	is	a	VOLUME	instruction	for	the	Dockerfile,	where	you	can	define	which	directories	to
expose	to	other	containers	when	this	data	volume	container	is	added	using	--volumes-
from	attribute.	In	our	data	volume	containers,	we	first	need	to	add	a	directory	for	MySQL
data.	Let’s	take	a	look	inside	the	MySQL	image	we	will	be	using	to	see	which	directory	is
used	for	the	data	storage,	and	expose	that	directory	to	our	data	volume	container	so	that
we	can	own	it:

RUN	mkdir	–p	/var/lib/mysql

VOLUME	["/var/lib/mysql"]

We	also	want	our	WordPress	installation	in	this	container,	including	all	.php	files	and
graphic	images.	Once	again,	we	go	to	the	image	we	will	be	using	and	find	out	which
directory	will	be	used.	In	this	case,	it’s	/var/www/html.	When	you	add	this	to	the
Dockerfile,	don’t	add	new	lines;	just	append	the	lines	with	the	MySQL	data	directory:

RUN	mkdir	-p	/var/lib/mysql	&&	mkdir	-p	/var/www/html

VOLUME	["/var/lib/mysql",	"/var/www/html"]

The	Dockerfile
The	following	is	a	simple	Dockerfile	for	the	data	image:

FROM	busybox:latest

MAINTAINER	Oskar	Hane	<oh@oskarhane.com>

RUN	mkdir	-p	/var/lib/mysql	&&	mkdir	-p	/var/www/html

VOLUME	["/var/lib/mysql",	"/var/www/html"]

And	that’s	it!	When	publishing	images	to	the	Docker	Registry	Hub,	it’s	good	to	include	a
MAINTAINER	instruction	in	the	Dockerfiles	so	that	you	can	be	contacted	if	someone	wants,
for	some	reason.

Hosting	on	GitHub
When	we	use	our	knowledge	on	how	to	host	Docker	image	sources	on	GitHub	and	how	to
publish	images	on	the	Docker	Registry	Hub,	it’ll	be	no	problem	creating	our	data	volume
image.

Let’s	create	a	branch	and	a	Dockerfile	and	add	the	content	for	our	data	volume	image:

git	checkout	-b	data

vi	Dockerfile

git	add	Dockerfile

On	line	number	2	in	the	preceding	code,	you	can	use	the	text	editor	of	your	choice.	I	just
happen	to	find	vi	suits	my	needs.	The	content	you	should	add	to	the	Dockerfile	is	this:

FROM	busybox:latest

MAINTAINER	Oskar	Hane	<oh@oskarhane.com>

RUN	mkdir	/var/lib/mysql	&&	mkdir	/var/www/html

VOLUME	["/var/lib/mysql",	"/var/www/html"]

Replace	the	maintainer	information	with	your	name	and	e-mail.

You	can—and	should—always	ensure	that	it	works	before	committing	and	pushing	to
GitHub.	To	do	so,	you	need	to	build	a	Docker	image	from	your	Dockerfile:

docker	build	–t	data-test	.

Make	sure	you	notice	the	dot	at	the	end	of	the	line,	which	means	that	Docker	should	look
for	a	Dockerfile	in	the	current	directory.	Docker	will	try	to	build	an	image	from	the
instructions	in	our	Dockerfile.	It	should	be	pretty	fast,	since	it’s	a	small	base	image	and
there’s	nothing	but	a	couple	of	VOLUME	instructions	on	top	of	it.

The	screenshot	is	as	follows:

When	everything	works	as	we	want,	it’s	time	to	commit	the	changes	and	push	it	to	our
GitHub	repository:

git	commit	–m	"Dockerfile	for	data	volume	added."

git	push	origin	data

When	you	have	pushed	it	to	the	repository,	head	over	to	GitHub	to	verify	that	your	new
branch	is	present	there.

The	following	screenshot	shows	the	GitHub	repository:

Publishing	on	the	Docker	Registry	Hub
Now	that	we	have	our	new	branch	on	GitHub,	we	can	go	to	the	Docker	Hub	Registry	and
create	a	new	automated	build,	named	data.	It	will	have	our	GitHub	data	branch	as	source.

Wait	for	the	build	to	finish,	and	then	try	to	pull	the	image	with	your	Docker	daemon	to
verify	that	it’s	there	and	it’s	working.

The	screenshot	will	be	as	follows:

Amazing!	Check	out	the	size	of	the	image;	it’s	just	less	than	2.5	MB.	This	is	perfect	since
we	just	want	to	store	data	in	it.	A	container	on	top	of	this	image	can,	of	course,	be	as	big
as	your	hard	drive	allows.	This	is	just	to	show	how	big	the	image	is.	The	image	is	read-
only,	remember?

Running	a	data	volume	container
Data	volume	containers	are	special;	they	can	be	stopped	and	still	fulfill	their	purpose.
Personally,	I	like	to	see	all	containers	in	use	when	executing	docker	ps	command,	since	I
like	to	delete	stopped	containers	once	in	a	while.

This	is	totally	up	to	you.	If	you’re	okay	with	keeping	the	container	stopped,	you	can	start
it	using	this	command:

docker	run	–d	oskarhane/data	true

The	true	argument	is	just	there	to	enter	a	valid	command,	and	the	–d	argument	places	the
container	in	detached	mode,	running	in	the	background.

If	you	want	to	keep	the	container	running,	you	need	to	place	a	service	in	the	foreground,
like	this:

docker	run	–d	oskarhane/data	tail	–f	/dev/null

The	output	of	the	preceding	command	is	as	follows:

The	tail	–f	/dev/null	command	is	a	command	that	never	ends,	so	the	container	will	be
running	until	we	stop	it.	Resource-wise,	the	tail	command	is	pretty	harmless.

Passing	parameters	to	containers
We	have	seen	how	to	give	containers	parameters	or	environment	variables	when	starting
the	official	MySQL	container:

docker	run	--name	mysql-one	-e	MYSQL_ROOT_PASSWORD=pw	-d	mysql

The	–e	MYSQL_ROOT_PASSWORD=pw	command	is	an	example	showing	how	you	can	do	it.	It
means	that	the	MYSQL_ROOT_PASSWORD	environment	variable	inside	the	container	has	pw	as
the	value.

This	is	a	very	convenient	way	to	have	configurable	containers	where	you	can	have	a	setup
script	as	ENTRYPOINT	or	a	foreground	script	configuring	passwords;	hosts;	test,	staging,	or
production	environments;	and	other	settings	that	the	container	needs.

Creating	a	parameterized	image
Just	to	get	the	hang	of	this	feature,	which	is	very	good,	let’s	create	a	small	Docker	image
that	converts	a	string	to	uppercase	or	lowercase,	depending	on	the	state	of	an	environment
variable.

The	Docker	image	will	be	based	on	the	latest	Debian	distribution	and	will	have	only	an
ENTRYPOINT	command.	This	is	the	Dockerfile:

FROM	debian:latest

ADD	./case.sh	/root/case.sh

RUN	chmod	+x	/root/case.sh

ENTRYPOINT	/root/case.sh

This	takes	the	case.sh	file	from	our	current	directory,	adds	it	to	the	container,	makes	it
executable,	and	assigns	it	as	ENTRYPOINT.

The	case.sh	file	may	look	something	like	this:

#!/bin/bash

if	[-z	"$STR"];	then

								echo	"No	STR	string	specified."

								exit	0

fi

if	[-z	"$TO_CASE"];	then

								echo	"No	TO_CASE	specified."

								exit	0

fi

if	["$TO_CASE"	=	"upper"];	then

								echo	"${STR^^*}"

								exit	0

fi

if	["$TO_CASE"	=	"lower"];	then

								echo	"${STR,,*}"

								exit	0

fi

echo	"TO_CASE	was	not	upper	or	lower"

This	file	checks	whether	the	$STR	and	$TO_CASE	environment	variables	are	set.	If	the
check	on	whether	$TO_CASE	is	upper	or	lower	is	done	and	if	that	fails,	an	error	message
saying	that	we	only	handle	upper	and	lower	is	displayed.

If	$TO_STR	was	set	to	upper	or	lower,	the	content	of	the	environment	variable	$STR	is
transformed	to	uppercase	or	lowercase	respectively,	and	then	printed	to	stdout.

Let’s	try	this!

Here	are	some	commands	we	can	try:

docker	run	–i	case

docker	run	–i	-e	STR="My	String"	case

docker	run	–i	-e	STR="My	String"	–e	TO_CASE=camel	case

docker	run	–i	-e	STR="My	String"	–e	TO_CASE=upper	case

docker	run	–i	-e	STR="My	String"	–e	TO_CASE=lower	case

This	seems	to	be	working	as	expected,	at	least	for	this	purpose.	Now	we	have	created	a
container	that	takes	parameters	and	acts	upon	them.

Summary
In	this	chapter,	you	learned	that	you	can	keep	your	data	out	of	your	service	containers
using	data	volumes.	Data	volumes	can	be	any	one	of	directories,	files	from	the	host’s
filesystem,	or	data	volume	containers.

We	explored	how	we	can	pass	parameters	to	containers	and	how	to	read	them	from	inside
ENTRYPOINT.	Parameters	are	a	great	way	to	configure	containers,	making	it	easier	to	create
more	generalized	Docker	images.

We	created	a	data	volume	container	and	published	it	to	the	Docker	Registry	Hub,
preparing	us	for	the	next	chapter,	where	we	will	connect	our	three	containers	to	create	one
loosely	coupled	unit.

Chapter	5.	Connecting	Containers
It’s	time	to	connect	all	our	three	containers	to	form	a	single	unit	of	modularized	parts.	I’ll
introduce	you	to	two	services,	Docker	Compose	and	Crane,	which	can	be	used	to
automate	this.	We’ll	go	through	the	following	topics	in	this	chapter:

Manually	connecting	containers	together
Exploring	the	contents	of	a	data	volume	container
Connecting	containers	to	a	configuration	file	using	Docker	Compose
Connecting	containers	to	a	configuration	file	using	Crane

Manually	connecting	containers
Let’s	take	a	look	at	how	to	connect	our	service	containers	to	our	data	volume	container.
First,	we	have	to	run	our	data	volume	container,	then	run	our	MySQL	container,	and	lastly
run	our	WordPress	container,	as	shown	in	the	following	command:

docker	run	-d	--name	data-one	oskarhane/data	tail	-f	/dev/null

docker	run	--name	mysql-one	--volumes-from	data-one	-e	

MYSQL_ROOT_PASSWORD=mysecretpassword	-d	mysql

docker	run	--name	wordpress-one	--volumes-from	data-one	--link	mysql-

one:mysql	-d	-p	80	oskarhane/wordpress

Here,	we	have	fired	up	and	named	the	data	volume	container	data-one.	The	next	line	fires
up	the	MySQL	container,	named	mysql-one,	and	gives	it	the	data	volume	container.	The
last	line	fires	up	our	WordPress	container,	named	wordpress-one,	links	mysql-one	as	the
MySQL	link,	and	gives	it	the	data	volume	container.

The	following	output	is	displayed:

Open	your	web	browser	and	head	over	to	the	container’s	URL	and	port	in	order	to	verify
that	all	the	services	are	running	and	the	containers	are	tied	together	as	they	should	be.	You
should	see	the,	now	familiar,	WordPress	installation	page.

As	you	may	have	figured	out	by	now,	you	can	fire	up	another	WordPress	container	using
the	same	MySQL	link	and	the	same	data	volume	container.	What	do	you	think	will
happen?

The	new	WordPress	container	will	be	another	instance	of	the	same	WordPress	site,	with
the	same	files	and	the	same	database.

When	you	link	containers,	Docker	will	set	some	environment	variables	in	the	target
container	in	order	to	enable	you	to	get	information	about	the	linked	source	container.	In
our	case,	these	environment	variables	will	be	set	when	we	link	the	MySQL	container,	as
shown	in	the	following	command:

MYSQL_NAME=/wordpress-one/mysql-one

MYSQL_PORT=tcp://ip:3306

MYSQL_3306_TCP=tcp://ip:3306

MYSQL_3306_TCP_PROTO=tcp

MYSQL_3306_TCP_PORT=3306

MYSQL_3306_TCP_ADDR=ip

Exploring	the	contents	of	a	data	volume
container
Is	the	data	being	written	to	the	data	volume	container?	Or,	is	the	data	stored	inside	the
MySQL	and	WordPress	containers	when	connected?	How	can	you	tell?

One	way	to	determine	this	is	to	enter	a	container	via	a	shell	so	that	you	can	navigate
around	its	filesystem.	Since	version	1.3,	Docker	has	the	ability	to	start	a	new	instance	of	a
container’s	shell.	Running	the	old	docker	attach	command	just	gets	you	in	the	current
shell	instance,	which	in	our	case	has	tail	–f	/dev/null	running.	If	we	exit	this	tail
command,	the	container	will	exit	and	shut	down.	Therefore,	we	need	a	new	shell	instance
in	a	running	container	so	that	we	can	invoke	any	commands	we	want	inside	the	container
without	the	risk	of	the	container	exiting.	The	following	command	can	be	used	to	do	this:

docker	exec	-i	-t	data-one	/bin/sh

The	–i	and	–t	flags	mean	that	we	want	to	keep	the	session	interactive	and	allocate	a
pseudo-TTY.	data-one	is	the	name	of	the	container,	but	you	can	use	the	container	ID	if
you	like.	I	would	choose	/bin/bash	over	/bin/sh,	but	the	container	runs	BusyBox	and
/bin/bash	isn’t	available	there.	For	the	kinds	of	tasks	that	we	are	about	to	perform,	it
doesn’t	matter	which	shell	we	use.

What	we	want	to	do	is	to	take	a	look	in	the	directories	we	exposed	as	VOLUMES	in	this	data
volume	container.	The	directories	are	/var/www/html	and	/var/lib/mysql.

Let’s	explore	in	the	following	command:

ls	-la	/var/www/html

ls	-la	/var/lib/mysql

The	following	output	is	displayed:

We	see	files	on	both	those	directories,	which	indicates	that	the	two	other	containers	are
writing	to	this	one.	It	separates	the	services	with	the	data.	If	you	want	further	proof,	launch
vi	in	the	shell,	edit	a	file,	and	reload	the	site	in	your	browser.

This	worked	out	really	smooth	and	easy,	didn’t	it?	The	containers	interact	with	each	other
and	all	we	have	to	do	is	to	link	them	together	with	just	one	command.

Connecting	containers	using	Docker
Compose
Docker	Compose	was	previously	called	Fig,	but	Docker	acquired	Fig	and	the	name	was
changed.	This	is	how	Docker	describes	Docker	Compose:

“Compose	is	a	tool	for	defining	and	running	complex	applications	with	Docker.	With
Compose,	you	define	a	multi-container	application	in	a	single	file,	then	spin	your
application	up	in	a	single	command	which	does	everything	that	needs	to	be	done	to
get	it	running.”

Docker	Compose	basically	gives	us	a	way	to	define	settings	in	a	configuration	file,	so	we
don’t	have	to	remember	all	the	names	for	all	the	containers	when	linking	them	together,
the	ports	to	expose,	the	data	volume	container	to	use,	and	so	on.

Installing	Docker	Compose
Docker	Compose	has	regular	releases	on	GitHub,	and	at	the	time	of	writing	this	book,	the
latest	release	is	1.0.1.

We	will	install	Docker	Compose	with	the	Python	package	manager,	pip.	Our	EC2	instance
does	not	come	with	pip	installed,	so	we	have	to	start	with	the	installation,	as	shown	here:

sudo	su

wget	https://bootstrap.pypa.io/get-pip.py	&&	python	./get-pip.py

The	following	output	is	displayed:

After	pip	is	installed,	you	can	go	ahead	and	install	Docker	Compose:

sudo	pip	install	-U	docker-compose

Now,	you’ll	see	Docker	Compose	installed	along	with	all	of	its	dependencies.	Invoke
docker-compose	--version	to	verify	that	it	works	as	expected.

Basic	Docker	Compose	commands
The	following	are	the	basic	Docker	Compose	commands	that	you	should	be	familiar	with:

build:	This	is	used	to	build	or	rebuild	services
kill:	This	forces	the	service	containers	to	stop
logs:	This	views	the	output	from	the	services
port:	This	is	used	to	print	the	public	port	for	a	port	binding
ps:	This	is	used	to	list	containers
pull:	This	is	used	to	pull	service	images
rm:	This	is	used	to	remove	stopped	service	containers
run:	This	is	used	to	run	a	one-off	command	on	a	service
scale:	This	sets	the	number	of	containers	to	be	run	for	a	service
start:	This	is	used	to	start	existing	containers	for	a	service
stop:	This	stops	running	containers	without	removing	them
up:	This	builds,	recreates,	starts,	and	attaches	to	containers	for	a	service;	linked
containers	will	be	started,	unless	they	are	already	running

As	you	can	see,	the	commands	are	very	similar	to	the	Docker	client	commands	and	most
of	them	do	the	exact	same	thing	by	forwarding	the	commands	to	the	Docker	daemon.	We
will	go	through	some	of	them	a	little	more	in	detail.

Service
When	the	word	service	is	used	with	Docker	Compose,	it	refers	to	a	named	container	in	a
docker-compose.yml	configuration	file.

Using	the	run	command
We	are	used	to	starting	containers	with	the	run	command	for	the	Docker	client.	With
docker-compose,	the	run	command	is	very	different.	When	you	run	a	command	with
docker-compose,	it’s	a	one-off	command	on	a	service.	This	means	that	if	we	name	a
container	configuration	Ubuntu	and	invoke	docker-compose	run	ubuntu	/bin/bash
echo	hello,	the	container	will	start	and	execute	/bin/bash	echo	hello	and	then	shut
down.	The	difference	with	this	and	running	the	command	directly	with	Docker	is	that	all
the	linked	containers	and	VOLUME	containers	will	be	started	and	connected	when	you	use
docker-compose.

Using	the	scale	command
The	scale	command	is	very	interesting.	When	we	invoke	docker-compose	scale	web=3,
we	actually	start	three	containers	of	the	service	that	we	named	web.

Setting	up	our	PaaS	with	Docker	Compose
Every	Docker	Compose	instance	lives	in	its	own	directory	and	has	a	configuration	file
named	docker-compose.yml	inside	it:

mkdir	docker-compose-wp	&&	cd	$_

touch	docker-compose.yml

This	is	how	the	contents	of	our	docker-compose.yml	file	will	look:

wp:

		image:	oskarhane/wordpress

		links:

				-	mysql:mysql

		ports:

				-	"80"

		volumes_from:

				-	paasdata

mysql:

		image:	mysql

		volumes_from:

				-	paasdata

		environment:

				-	MYSQL_ROOT_PASSWORD=myrootpass

paasdata:

		image:	oskarhane/data

		command:	tail	-f	/dev/null

You	can	see	that	we	have	defined	three	services	here,	namely	wp,	mysql,	and	paasdata.

Lets	try	these	services	and	the	following	output	is	displayed:

Invoke	docker-compose	up	–d	to	run	docker-compose	and	the	containers	in	daemon
mode.

That’s	how	easy	it	is.	Open	your	web	browser	and	head	to	your	Docker	host	and	the	port
stated	in	the	table	(in	my	case,	port	49155);	you	should	see	the	very	familiar	WordPress
installation	page.

Connecting	containers	using	Crane
Crane	is	much	like	Docker	Compose,	but	it	has	more	configuration	possibilities.	This	is
how	its	creator	describes	Crane:

“Crane	is	a	tool	to	orchestrate	Docker	containers.	It	works	by	reading	in	some
configuration	(JSON	or	YAML)	which	describes	how	to	obtain	images	and	how	to
run	containers.	This	simplifies	setting	up	a	development	environment	a	lot	as	you
don’t	have	to	bring	up	every	container	manually,	remembering	all	the	arguments	you
need	to	pass.	By	storing	the	configuration	next	to	the	data	and	the	app(s)	in	a
repository,	you	can	easily	share	the	whole	environment.”

This	paragraph	can	be	about	Docker	Compose	as	well,	as	you	can	see.

Installing	Crane
Crane	is	easy	to	install	but	not	easy	to	keep	updated.	The	same	command	is	used	to	install
as	well	as	update,	so	we	have	to	invoke	this	once	in	a	while	in	order	to	have	the	latest
version.

Invoke	the	following	command	on	a	single	line	to	install	Crane:

bash	-c	"`curl	-sL	

https://raw.githubusercontent.com/michaelsauter/crane/master/download.sh`"	

&&	sudo	mv	crane	/usr/local/bin/crane

Crane	is	now	installed	in	/usr/local/bin.

Usage
I	won’t	go	through	all	the	commands	here	since	they’re	similar	to	Docker	Compose’s
commands,	but	I’ll	comment	on	a	few	here:

lift:	This	command,	like	Docker	Compose’s	up	command,	builds	and	runs
containers	from	your	configuration	file
graph:	This	prints	your	containers’	relations	from	the	configuration	file
logs:	This	maps	to	the	Dockers	Compose’s	command,	but	here	you	can	get	the	logs
for	a	whole	group
status:	This	also	maps	to	the	Dockers	Compose’s	command	but	lets	you	get	the	logs
for	a	group

Configuration
This	is	where	Crane	really	leaves	Docker	Compose	behind.	You	have	many	more
configuration	options	for	Crane	apps.	The	configuration	file	must	be	named	crane.json
or	crane.yaml.	For	every	container,	this	is	what	you	can	configure:

image	(string,	required):	This	is	the	name	of	the	image	to	build/pull
dockerfile	(string,	optional):	This	gives	the	relative	path	to	the	Dockerfile
run	(object,	optional):	These	parameters	are	mapped	to	Docker’s	run	and	create
commands:

add-host	(array):	This	adds	custom	host-to-IP	mappings
cpuset	(integer)
cpu-shares	(integer)
detach	(boolean)	sudo	docker	attach	<container	name>	will	work	as	normal
device	(array):	This	adds	host	devices
dns	(array)
entrypoint	(string)
env	(array)
expose	(array):	This	denotes	the	ports	to	be	exposed	to	linked	containers
hostname	(string)
interactive	(boolean)
link	(array):	This	links	containers
memory	(string)
privileged	(boolean)
publish	(array):	This	maps	network	ports	to	the	container
publish-all	(boolean)
restart	(string)	Restart	policy
rm	(boolean)
tty	(boolean)
volume	(array):	In	contrast	to	plain	Docker,	the	host	path	can	be	relative
volumes-from	(array):	This	is	used	to	mount	volumes	from	other	containers
workdir	(string)
cmd	(array/string):	This	command	is	used	to	append	to	docker	run	(overwriting
CMD)

rm	(object,	optional):	These	parameters	are	mapped	to	Docker’s	rm	command:

volumes	(boolean)

start	(object,	optional):	These	parameters	are	mapped	to	Docker’s	start
command:

attach	(boolean)
interactive	(boolean)

Set	up	the	same	configuration	that	you	did	in	Docker	Compose;	it	will	look	something	like
the	following	code.	As	you	might	understand,	you	can	write	this	in	the	JSON	format	as

well,	but	for	the	comparison	to	Docker	Compose’s	version	to	be	as	easy	as	possible,	I’ll
keep	it	in	the	yaml	format:

containers:

		wp:

				image:	oskarhane/wordpress

				run:

						volumes-from:	["mydata"]

						link:	

								-	mymysql:mysql

						publish:	["80"]

						detach:	true

		mymysql:

				image:	mysql

				run:

						volumes-from:	["mydata"]

						detach:	true

						env:	["MYSQL_ROOT_PASSWORD=rootpass"]

		mydata:

				image:	oskarhane/data

				run:

						detach:	true

						cmd:	"tail	-f	/dev/null"

Here,	we	specify	three	containers,	where	the	data	container	is	added	as	a	data	volume
container	to	the	others	and	the	MySQL	container	is	linked	to	the	WordPress	container.

Save	this	file	as	crane.yaml	and	type	crane	lift	to	run	your	app.

The	following	output	is	displayed:

To	see	the	containers’	current	statuses,	we	can	type	crane	status.	Take	a	look	at	the	last
column	in	our	wp	container.	It	says	it’s	not	running.	Type	crane	logs	wp	and	see	what	it
says	in	following	command:

wp	*	WordPress	not	found	in	/var/www/html	-	copying	now…

wp	*	Complete!	WordPress	has	been	successfully	copied	to	/var/www/html

wp	|	

wp	|	Warning:	mysqli::mysqli():	(HY000/2002):	Connection	refused	in	-	on	

line	5

wp	*	MySQL	Connection	Error:	(2002)	Connection	refused

It	seems	that	our	WordPress	container	starts	faster	than	our	MySQL	container,	so	the
WordPress	container	can’t	find	it	when	it	starts.

This	can	happen	in	Docker	Compose	as	well	because	there’s	no	check	if	--link:ed
containers	are	up,	at	least	not	at	the	time	when	this	is	being	written.

This	cannot	be	solved	in	Docker	Compose;	we	have	to	rely	on	pure	luck	that	the	MySQL
container	will	get	ready	before	the	WordPress	container	tries	to	use	the	linked	MySQL
container.

With	Crane,	you	can	group	containers	inside	the	configuration	file	in	different	groups	and
then	run	commands	on	that	group	instead	of	the	whole	configuration.

This	is	very	easy;	we	just	add	these	lines	at	the	end	of	our	crane.yaml	file:

groups:

		default:	['mydata',	'mymysql',	'wp']

		data_db:	['mydata',	'mymysql']

		web:	['wp']

Here,	we	have	separated	the	WordPress	container	from	the	other	two	containers	we	have
so	that	we	can	run	commands	on	them	separately.

Let’s	start	our	data_db	group	first	by	invoking	the	crane	lift	data_db	--recreate
command.	I	added	the	flag	--recreate	and	to	make	sure	that	we’re	creating	new
containers	and	not	reusing	the	old	ones.	Run	crane	status	data_db	to	make	sure	they’re
running.

Now	that	we	know	that	the	MySQL	container	is	running,	we	can	start	the	WordPress
container	by	invoking	the	crane	lift	web	--recreate	command.

The	following	output	is	displayed:

Summary
Now,	we	can	connect	containers	in	different	ways	to	keep	different	services	separate	on
different	containers.	We	learned	how	to	do	this	manually,	which	can	be	quite	hard	when
you	have	lots	of	dependencies	between	containers.

We	had	a	brief	look	at	two	orchestration	tools:	Docker	Compose	and	Crane.	Crane	is	an
independent	and	more	advanced	tool	for	the	administrators	who	want	more	control	over
containers.	The	ability	to	group	containers	in	Crane	makes	it	more	reliable	when	there	can
be	timing	issues	in	dependencies.

In	the	next	chapter,	we	will	run	two	instances	of	our	app	using	Crane	to	see	what	problems
and	possibilities	crop	up	when	we	want	to	make	both	our	blogs	publicly	accessible	on	the
regular	HTTP	port	(80).

Chapter	6.	Reverse	Proxy	Requests
One	big	problem	in	having	many	containers	with	public	ports	on	the	same	server	is	that
they	can’t	all	listen	to	the	standard	ports	for	their	kinds	of	services.	If	we	have	a	MySQL
backend	service	and	have	10	MySQL	containers	running,	only	one	of	them	can	listen	to
the	MySQL	standard	port	3306.	For	those	who	expose	a	web	server,	the	standard	port	80
can	only	be	used	by	one	of	their	WordPress	containers.	In	this	chapter,	we’ll	cover	the
following	topics:

Explaining	the	problem
Coming	up	with	a	solution	to	the	problem
Implementing	the	solution	with	Nginx	and	HAProxy
Automating	the	process	of	mapping	domains

Explaining	the	problem
The	problem	in	having	many	containers	with	the	same	services	on	the	same	host	is	that
there	are	standard	ports	used	by	user	applications.	Using	a	web	browser	and	entering	the
IP	to	a	Docker	host	running	a	WordPress	container	will	ask	for	resources	on	port	80	by
default.	You	can’t	expect	your	users	to	remember	a	nonstandard	port	in	order	to	enter	your
website.

The	only	way	to	reach	each	of	the	three	containers	is	to	manually	enter	the	containers’
exposed	port	number.

Finding	a	solution
Before	we	head	to	the	solution,	let	me	explain	what	a	regular	proxy	server	is,	in	case
you’re	not	familiar	with	it.

A	proxy	server	is	a	server	that	connects	to	services	on	your	behalf	and	forwards	all	the
results	to	you.	After	you’ve	set	up	to	route	all	your	traffic	through	the	proxy	server,	you—
as	a	user—won’t	notice	it’s	there.	Everything	will	work	as	usual.

However,	service	owners	only	see	that	a	certain	machine	(the	proxy	server)	is	connected
to	them.	If	another	user	uses	the	same	proxy	server	and	the	same	service	as	you	do,	the
service	owner	can’t	tell	the	difference	and	will	perceive	you	as	one	single	user.

Different	users	connecting	through	a	proxy	server	appear	as	one	user.

As	you	can	see	in	the	preceding	diagram,	the	service	owners	just	see	that	someone	with	an
IP	of	213.12.12.3	has	connected	to	them.

So,	what	if	we	use	this	on	the	Docker	host?	What	if	we	put	something	in	front	of	all	the
containers?	Depending	on	which	domain	name	is	being	requested,	this	thing	will	forward
the	request	to	the	right	container	and	port	and	then	just	forward	the	request’s	response	to
the	requesting	user.

There	are	things	especially	made	to	solve	this	kind	of	problem.	They’re	called	reverse
proxies	(reverse	because	the	proxy	is	at	the	other	end,	making	the	user	only	see	one	IP	and

forwarding	the	request).

If	we	install	and	configure	a	reverse	proxy	on	our	Docker	host	server,	then	this	is	how	the
diagram	will	look:

A	reverse	proxy	lets	all	Docker	containers	appear	as	one.

The	reverse	proxy	listens	to	port	80—the	standard	web	port—and	when	a	request	for
domain1.com	comes	in,	the	proxy	looks	at	its	configuration	to	see	whether	there	is	a
specified	forwarding	endpoint	for	this	domain.	If	there	is,	the	reverse	proxy	forwards	the
request	to	the	right	Docker	container,	waits	for	its	response,	and	forwards	the	container’s
response	to	the	requesting	users	when	it	comes.

This	is	the	solution	we’re	after.	The	only	question	now	is	which	reverse	proxy	we	are
going	to	use.	There	are	quite	a	bunch	of	them	out	there;	some	reverse	proxies	have	more
specific	purposes,	such	as	load	balancing,	and	some	are	services	that	do	a	lot	of	other	stuff
and	have	this	feature	as	well,	such	as	a	web	server.

Implementing	the	solution
You	will	always	have	preferences	when	selecting	a	tool	to	solve	a	problem.	Sometimes,
you	select	a	tool	because	you’re	comfortable	using	it	and	it’s	good	enough;	sometimes,
you	select	it	because	it	has	great	performance	or	because	you	just	want	to	try	something
new.

That’s	why	we	will	go	through	this	problem	and	solve	it	with	two	different	tools.	The	end
result	will	be	the	same,	but	the	tools	have	a	slightly	different	setup.

Before	we	start	implementing	the	solutions,	we	use	Crane	to	start	an	instance	of	our	three-
container	application	and	verify	that	it’s	working	by	connecting	it	to	the	site.	Have	Docker
decide	the	public	port	for	you,	so	it’s	491XX.	Remember	this	port	since	we	will	use	it	when
implementing	the	solutions.

We	need	to	point	out	the	domain	names	we	want	to	use	to	our	Docker	host’s	IP	address.
We	can	do	this	either	by	setting	the	domain	names	A-record	to	our	server’s	IP	address	or
by	adding	a	line	in	our	local	/etc/hosts	file,	which	directs	requests	to	the	domain	names
to	our	server’s	IP	address.

I’ll	go	with	the	latter	and	enter	this	in	my	Mac’s	/etc/hosts	file:

54.148.253.187	domain1.com

54.148.253.187	domain2.com

54.148.253.187	domain3.com

Note
Make	sure	you	replace	the	above	IP	address	with	your	server’s	IP	address.

Implementation	with	HAProxy
HAProxy	(http://www.haproxy.org)	is	a	load	balancer,	which	has	the	role	of	forwarding
traffic	to	different	services	behind	it.

This	is	how	HAProxy	describe	themselves:

“HAProxy	is	a	free,	very	fast	and	reliable	solution	offering	high	availability,	load
balancing,	and	proxying	for	TCP	and	HTTP-based	applications.	It	is	particularly
suited	for	very	high	traffic	web	sites	and	powers	quite	a	number	of	the	world’s	most
visited	ones.	Over	the	years	it	has	become	the	de-facto	standard	open	source	load
balancer,	is	now	shipped	with	most	mainstream	Linux	distributions,	and	is	often
deployed	by	default	in	cloud	platforms.”

This	sounds	like	something	that	fits	our	needs.

Installing	HAProxy
As	noted	in	the	quote,	many	systems	are	installed	already	and	shipped	with	it.	If	you	can’t
find	it,	it	should	be	available	in	you	package	manager	if	you	use	Ubuntu	or	Debian	(apt-
get	install	haproxy)	or	in	some	other	distro	with	a	package	manager.

On	my	Amazon	EC2	instance	that	runs	Amazon	Linux,	HAProxy	can	be	installed	using
yum	install	haproxy.

The	following	output	will	be	obtained	as	follows:

http://www.haproxy.org

It’s	not	the	most	recent	version,	but	that’s	OK	for	the	things	we	are	about	to	do.

Configuring	HAProxy
We’ll	write	an	HAProxy	configuration	in	the	file	/etc/haproxy/docker.cfg	so	that	we
don’t	have	to	remove	everything	in	the	default	configuration	file,	as	it	may	be	good	for
reference	in	the	future.

HAProxy	divides	its	configuration	into	four	parts:	global,	defaults,	frontend,	and	backend.
Don’t	confuse	frontend	and	backend	with	frontend	and	backend	development.	Here,
frontend	means	the	server	part	that’s	facing	the	Internet,	and	backend	is	the	server	part
that’s	behind	HAProxy,	which	in	our	case	are	the	Docker	containers.

Open	the	configuration	file	and	start	by	typing	in	the	generic	stuff,	as	shown	here:

global

				daemon

				maxconn	4096

				pidfile	/var/run/haproxy.pid

defaults

				mode	http

				timeout	connect	5000ms

				timeout	client	50000ms

				timeout	server	50000ms

Now,	we	enter	the	port	to	listen	on	and	the	backend	configurations	to	use	for	which
domain:

frontend	http-in

				bind	*:80

				acl	is_site1	hdr_end(host)	-i	domain1.com

				use_backend	site1	if	is_site1

We	define	that	regular	incoming	HTTP	traffic	on	port	80	should	be	captured.	The	acl	here
means	access	control	list	and	is	a	flexible	solution	to	take	decisions	based	on	content
extracted	from	the	requests.	The	hdr_end(host)	-i	domain1.com	function	call	means
that	the	end	of	the	header	host	is	case-insensitive,	matched	against	the	string	domain1.com.
The	result	(Boolean)	of	this	match	is	saved	in	the	is_site1	variable.

Note	that	this	means	that	all	the	subdomains	for	domain1.com	will	be	matched	with	this
setup.	If	you	just	want	to	match	www.domain1.com,	you	can	use	hdr(host)	-i
www.domain1.com	instead.

Now	that	we	have	the	match	result	in	the	is_site1	variable,	we	can	send	the	request	to	a
backend	configuration,	named	site1.

We	append	this	to	our	configuration	file:

backend	site1

				balance	roundrobin

				option	httpclose

				option	forwardfor

				server	s1	127.0.0.1:49187	maxconn	450

We	define	our	backend	name	as	site1,	set	a	few	options,	and	add	the	server	and	the	port
to	our	WordPress	container.

Note
Make	sure	you	enter	your	WordPress	container’s	exposed	port	instead	of	49187	in	the
preceding	code.

It’s	time	to	try	this	configuration.	Save	the	configuration	file	and	test	it	in	a	shell	with	this
command:

haproxy	-f	/etc/haproxy/docker.cfg	–c

The	output	should	say	Configuration	file	is	valid.

Make	sure	you	don’t	have	something	already	listening	to	port	80	on	your	machine.	You
can	use	something	such	as	netstat	–a	to	verify	that	80	or	HTTP	isn’t	listed.	If	they	are,
find	the	app	that’s	listening	and	shut	it	down.

Start	HAProxy	with	this	command:

haproxy	-f	/etc/haproxy/docker.cfg	–D

The	-D	option	means	that	we	want	to	run	it	as	a	daemon	in	the	background.	You	shouldn’t
see	any	output	when	you	invoke	this	command.

Let’s	check	whether	HAProxy	is	running	by	invoking	ps	aux	|	grep	haproxy.	You
should	see	it	listed	there.	Finally,	let’s	verify	that	it	is	listening	to	port	80	by	invoking
netstat	–a	|	grep	http.	Now,	you	should	have	something	in	that	list.

The	output	obtained	is	displayed	here:

It	all	looks	good!

Just	to	recap	what	we	have	done	here:	we	set	up	a	service	that	listens	for	incoming
requests	on	port	80	on	our	server.	When	a	request	on	this	port	comes	in,	a	check	on	the
request	header’s	host	is	performed	to	see	whether	it	matches	domain1.com.	If	we	have	a
match,	the	request	is	forwarded	to	the	IP	address	127.0.0.1	and	to	the	port	49187.	The
response	from	this	IP	and	port	are	sent	back	to	the	requester.

Now	to	the	moment	of	truth.	Open	your	web	browser	and	enter	the	URL	domain1.com.

Make	sure	that	you	have	entries	for	domain1.com	in	your	host’s	file,	pointing	it	to	your
server.

After	you	perform	the	preceding	instructions,	you	will	see	the	following	website	screen:

You	can	see	that	in	the	location	bar,	no	port	is	specified.	Wonderful!

Adding	more	domains	to	HAProxy
We	did	not	go	through	all	this	just	to	serve	a	single	web	application	on	port	80,	which	can
be	done	without	a	reverse	proxy.	Start	another	WordPress	application	with	Crane	by
copying	the	old	configuration	to	a	new	directory	and	change	the	service’s	names,	as	shown
here:

cd..

cp	–r	crane-wp	crane-wp2

cd	crane-wp2

sed	-i	"s/wp/wp2/g"	crane.yaml

sed	-i	"s/mydata/mydata2/g"	crane.yaml

sed	-i	"s/mymysql/mymysql2/g"	crane.yaml

crane	lift	data_db

crane	lift	wp2

#check	out	port	for	new	container	named	wp2

docker	ps

Open	the	HAProxy	configuration	file	again	and	add	two	lines	in	the	frontend:

acl	is_site2	hdr_end(host)	-i	domain2.com

use_backend	site2	if	is_site2

After	that,	add	a	new	backend	configuration	named	site2:

backend	site2

				balance	roundrobin

				option	httpclose

				option	forwardfor

				server	s2	127.0.0.1:49188	maxconn	450

Make	sure	that	you	replace	the	port	with	the	one	you	got.	Restart	HAProxy	and	do	the
checks	we	did	the	last	time	we	started	it.

To	restart	HAProxy,	run	/etc/init.d/haproxy	restart.

Note
HAProxy	can	reload	a	new	configuration	without	dropping	active	sessions	with	this
command:

haproxy	-f	/etc/haproxy/docker.cfg	-p	/var/run/haproxy.pid	-sf	$(cat	

/var/run/haproxy.pid)

Open	your	browser	and	go	to	domain1.com	in	order	to	make	sure	that	the	old	one	is
working.	If	it	does,	go	to	domain2.com.	You	should	see	another	WordPress	installation
site.	Just	to	be	sure	that	it’s	not	the	same,	go	ahead	and	install	one	of	them.	Or,	go	to
domain3.com	and	see	what	happens	when	a	domain	points	to	the	server	without	having	it
match	in	HAProxy.

Implementation	with	Nginx
Now,	we	are	going	to	do	the	same	thing	as	we	did	with	HAProxy,	but	we	will	use	the
excellent	web	server	Nginx	(http://nginx.org/en/)	as	our	reverse	proxy	instead.	Nginx	is	a
full	featured	and	really	fast	web	server	that	leaves	a	small	footprint	in	the	memory.

This	is	how	Nginx	is	described:

“nginx	[engine	x]	is	an	HTTP	and	reverse	proxy	server,	as	well	as	a	mail	proxy
server,	written	by	Igor	Sysoev.	For	a	long	time,	it	has	been	running	on	many	heavily
loaded	Russian	sites	including	Yandex,	Mail.Ru,	VK,	and	Rambler.	According	to
Netcraft,	nginx	served	or	proxied	20.41%	busiest	sites	in	November	2014.	Here	are
some	of	the	success	stories:	Netflix,	Wordpress.com,	FastMail.FM.”

This	also	sounds	like	what	we	need,	just	like	it	did	with	HAProxy.

Installing	Nginx
Nginx	is	available	in	all	Linux	package	managers,	such	as	aptitude/apt,	yum,	and	others,
so	an	install	can	be	simply	done	with	apt-get	install	nginx	or	yum	install	nginx.
Since	it’s	open	source,	you	can,	of	course,	install	it	from	the	source	as	well.

Configuring	Nginx
We	are	going	to	add	the	configuration	to	a	file	named	/etc/nginx/conf.d/wp1.conf.

Create	and	open	this	file	in	your	favorite	text	editor:

server	{

				listen	80;

				server_name	domain1.com;

				charset	UTF-8;

				if	($host	!~	^(domain1.com)$)	{

									return	444;

				}

}

This	block,	as	you	can	see,	makes	the	server	listen	to	port	80	and	to	match	the	domain
domain1.com	for	this	configuration	to	apply.	It’s	always	good	to	specify	the	server	charset
so	that	the	website	text	does	not	get	the	wrong	encoding	during	the	forwarding	process;
so,	we	add	that	line	as	well.	To	just	listen	to	domain1.com	and	nothing	else	(Nginx	uses	the
first	configuration	found	as	a	default	configuration	if	there’s	no	match	in	the	server	name
part),	we	return	the	HTTP	status	code	444	(no	response)	on	the	other	requests	that	get	in
there.

What	are	we	going	to	do	with	the	requests	on	port	80	for	domain1.com	then?

Add	this	inside	the	server’s	scope	(curly	brackets):

location	/	{

				proxy_pass	http://wp1;

				proxy_set_header	X-Real-IP	$remote_addr;

http://nginx.org/en/

				proxy_set_header	X-Forwarded-For	$proxy_add_x_forwarded_for;

				proxy_set_header	X-NginX-Proxy	true;

				proxy_set_header	Host	$host;

				proxy_set_header	X-Forwarded-Proto	$scheme;

				proxy_redirect	off;

}

The	location	block	will	match	all	the	requests	since	it	matches	/.	We	will	get	back	to	the
proxy_pass	part	in	a	while.	Other	than	this,	you’ll	see	that	we	set	a	lot	of	headers,	most	of
them	telling	our	Docker	container	the	requesters’	real	IP	address	and	so	on.

Back	to	the	proxy_pass	part.	This	is	the	part	that	actually	forwards	the	request,	to
something	named	wp1.	This	is	called	an	upstream,	which	we	have	to	define.

Add	this	outside	the	server’s	scope:

upstream	wp1	{

				server	127.0.0.1:49187;

}

The	complete	configuration	file	named	/etc/nginx/conf.d/wp1.conf	should	look	like
this	now:

upstream	wp1	{

		server	127.0.0.1:49187;

}

server	{

		listen	80;

		server_name	domain1.com;

		charset	UTF-8;

		if	($host	!~	^(domain1.com)$)	{

				return	444;

		}

		location	/	{

				proxy_pass	http://wp1;

				proxy_set_header	X-Real-IP	$remote_addr;

				proxy_set_header	X-Forwarded-For	$proxy_add_x_forwarded_for;

				proxy_set_header	X-NginX-Proxy	true;

				proxy_set_header	Host	$host;

				proxy_set_header	X-Forwarded-Proto	$scheme;

				proxy_redirect	off;

		}

}

Save	the	file	and	on	most	Linux	systems,	you	can	test	it	for	syntax	errors	using	the
command	sudo	/etc/init.d/nginx	configtest	or	sudo	service	nginx	configtest.

Note
Make	sure	that	you	have	shut	down	HAProxy	before	you	start	Nginx,	or	you	will	get	an
error	saying	that	Nginx	can’t	bind	to	port	80.	You	can	do	this	with	the	following
command:

/etc/init.d/haproxy	stop

If	the	test	was	successful,	we	can	now	restart	(or	start)	the	Nginx	server.	Again,	use	sudo
/etc/init.d/nginx	restart	or	sudo	service	nginx	restart	on	most	systems.

Head	over	to	your	web	browser	and	enter	the	URL	domain1.com	to	take	a	look	at	our
WordPress	installation	site.	To	make	sure	nothing	but	domain1.com	works,	try	to	go	to
domain2.com	and	expect	no	response.

Adding	more	domains	to	Nginx
To	add	another	domain	to	match	in	Nginx,	you	can	create	a	new	file	in	the
/etc/nginx/conf.d/	directory	and	reload	the	Nginx	configuration,	as	shown	in	the
following	code:

cp	/etc/nginx/conf.d/wp1.conf	/etc/nginx/conf.d/wp2.conf

sed	-i	"s/wp1/wp2/g"	/etc/nginx/conf.d/wp2.conf

sed	-i	"s/domain1/domain2/g"	/etc/nginx/conf.d/wp2.conf

sed	-i	"s/49187/49188/g"	/etc/nginx/conf.d/wp2.conf

#test	config

/etc/init.d/nginx	configtest

#reload	config

/etc/init.d/nginx	reload

Copy	the	configuration	file,	replace	a	few	names,	run	configtest,	and	reload	Nginx.

Try	domain1.com	in	your	browser	to	make	sure	it	still	works.	You	should	still	see	the
WordPress	installation	page	(unless	you	installed	WordPress,	of	course);	head	over	to
domain2.com	after	that	to	see	whether	our	new	configuration	is	used.

If	you	want	to	take	a	site	down,	just	change	the	file’s	extension	from	.conf	to	something
else	and	reload	Nginx.

Automating	the	process	of	mapping
domains
The	limitations	in	this	setup	are	that	it’s	manual	and	hands-on	every	time	a	new	domain	is
added.	On	my	website	(http://oskarhane.com),	I’ve	written	some	blog	posts	about	how	this
process	could	be	automated	and	those	posts	are	my	most-read	posts	of	all	time.

I	was	very	glad	when	I	found	nginx-proxy	by	Jason	Wilder.	nginx-proxy	solves	this
problem	in	a	more	clever	way	than	me	by	monitoring	Docker	events	via	the	Docker
Remote	API.

Note
You	can	read	more	about	nginx-proxy	on	its	GitHub	page
(https://github.com/jwilder/nginx-proxy).

nginx-proxy	comes	as	a	container	and	we	can	run	it	by	executing	the	following
command:

docker	run	-d	-p	80:80	-v	/var/run/docker.sock:/tmp/docker.sock	

jwilder/nginx-proxy

We	are	giving	the	container	our	Docker	socket,	so	it	can	listen	for	the	events	we	are
interested	in,	which	are	container	starts	and	stops.	We	also	bind	the	Docker	hosts’	port	80
to	this	new	container,	making	it	the	entrance	container	for	all	incoming	web	requests.
Make	sure	you	stop	Nginx	on	the	Docker	host	before	starting	the	nginx-proxy	container.
You	can	do	this	with	the	following	command:

/etc/init.d/nginx	stop

When	a	container	starts,	nginx-proxy	creates	an	nginx	reverse	proxy	config	file	and
reloads	Nginx—just	like	we	did,	but	fully	automated	with	nginx-proxy.

To	tell	nginx-proxy	which	domain	we	want	mapped	to	which	container,	we	must	run	our
containers	with	an	environment	variable	named	VIRTUAL_HOST.

In	our	crane.yaml	file	,	we	add	an	environment	variable	in	the	wp	run	section:

containers:

		wp:

				image:	oskarhane/wordpress

				run:

						volumes-from:	["mydata"]

						link:

								-	mymysql:mysql

						publish:	["80"]

						detach:	true

						env:	["VIRTUAL_HOST=domain1.com"]

Now,	we	just	have	to	lift	this	with	crane	again	to	have	this	container	mapped	to	the
domain	domain1.com	on	port	80:

http://oskarhane.com
https://github.com/jwilder/nginx-proxy

crane	lift	web	--recreate

Summary
In	this	chapter,	we	saw	how	you	can	solve	the	problem	of	having	multiple	containers	that
want	to	serve	data	on	the	same	public	port.	We	learned	what	a	proxy	server	and	reverse
proxy	server	is	and	how	a	reverse	proxy	is	used	in	load	balancing.

We	installed	and	configured	two	different	reverse	proxies:	HAProxy	and	Nginx.	In	my
workflow,	the	Nginx	setup	fits	better,	just	copying	a	file,	replacing	a	few	words,	and	then
reloading	Nginx	to	have	it	working.	HAProxy	might	work	better	in	your	setup;	the	choice
is	yours	and	one	cannot	be	said	to	be	better	than	the	other.

nginx-proxy	automates	the	process	of	creating	a	reverse	proxy	for	containers	that	are
started	and	is	an	OK	solution	for	a	PaaS,	except	for	one	thing:	easy	and	straightforward
deployment.	That’s	what	the	next	chapter	is	all	about.

Chapter	7.	Deployment	on	Our	PaaS
In	the	previous	chapters,	we	went	from	setting	up	our	PaaS	in	a	very	hands-on	manner	to	a
“hacked-together-automated”	way	by	combining	tools	such	as	Crane	and	nginx-proxy.
One	part	is	still	missing—how	to	deploy	your	code.

In	this	chapter	we	will	go	through	the	following	topics:

The	problem	with	our	current	setup
The	tools/services	available
Dokku—	mini-Heroku
Setting	up	a	WordPress	app	with	Dokku

The	problem	with	our	current	setup
Our	current	setup	consists	of	three	containers:	a	WordPress	container,	a	MySQL	container
and	a	data	volume	container,	tied	together	with	Crane.

The	main	problem	with	our	current	setup	using	a	VOLUME	container	as	file	storage	is	that
we	need	a	way	into	the	volume	to	edit	files.	As	of	now,	the	only	way	to	get	into	it	is	by
mounting	it	on	another	container.

Another	problem	is	that	we	don’t	version	control	our	source	code.	We	have	just
downloaded	WordPress	and	some	plugins	and	left	it	there.	What	if	we	update	WordPress
or	make	some	other	changes?	We	surely	want	to	have	that	under	version	control.

If	we	want	to	keep	the	application	architecture	as	it	is,	there	are	two	options:

Create	a	new	container	that	mounts	our	data	volume	container,	install	it,	and	get
access	to	it	with	SSH
Install	and	open	access	to	SSH	in	our	WordPress	container

With	SSH	installed,	we	can	access	the	containers	shell	from	a	remote	machine,	and	so,	we
can	install	Git	to	version	control	to	our	files.	In	this	way,	we	can	connect	and	push	new
code	into	the	data	volume	container	when	we	need	to.

When	connecting	with	SSH,	you	can	go	straight	into	the	container	without	needing	to
connect	to	the	Docker	hosts	shell.

If	you	are	okay	with	connecting	to	the	Docker	host,	and	from	there,	if	you	open	a	new
shell	to	get	into	your	data	volume	container,	a	third	option	would	be	to	SSH	into	your
Docker	hosts	and	then	access	the	container	with	docker	exec	–it	container_name
/bin/sh.

While	this	certainly	works,	there	are	easier	ways	to	do	it.

The	tools/services	available
When	we	look	at	hosted	PaaS	providers	available	today,	two	of	them	come	to	mind—
OpenShift	and	Heroku.	Many	developers	love	Heroku	because	of	its	ease	of	use.	Their
philosophy	gives	a	hint	why:

“Developer	Productivity:

Developer	productivity	is	our	battle	cry,	at	the	core	of	everything	we	do.	Why	require
three	steps	when	one	will	do?	Why	require	any	action	at	all	when	zero	steps	will	do?”

Developers	usually	want	to	spend	time	on	their	code,	not	managing	servers,	deployment,
and	so	on.

On	Heroku,	you	get	a	remote	Git	repository	into	which	you	can	push	code.	Your	app’s
language	and	dependencies	are	identified	by	special	files,	depending	on	the	language	you
use.	Environment	variables	are	used	for	configuration,	and	you	instruct	Heroku	what	to
execute	by	specifying	commands	in	a	special	file,	called	Procfile,	that	you	include	in	your
source	code.

Whenever	your	push	code	into	your	remote	Heroku	Git	repository,	the	app	rebuilds	and
you	have	it	online	right	away.	If	you	have	special	build	requirements,	Heroku	lets	you
create	your	own	buildpacks	where	you	can	specify	exactly	what’s	to	be	done.

Basically,	if	you	want	to	set	up	a	WordPress	blog	on	Heroku,	you	need	to	go	through	these
steps:

1.	 Locally	download	the	latest	version	of	WordPress.
2.	 Create	a	Procfile	and	define	what	to	execute	(a	buildpack	that	runs	PHP	and	Apache2

in	this	case).
3.	 Create	a	composer.json	file	that	specifies	that	PHP	is	a	dependency.
4.	 Make	some	changes	to	the	WordPress	config	files.
5.	 Create	the	Heroku	app,	add	add-ons	(such	as	a	database),	and	define	environment

variables	on	Heroku.
6.	 Push	your	local	code	into	Heroku.

When	you	make	a	change	to	the	code,	you	just	Git	push	to	Heroku	to	deploy	the	new
code.	You	cannot	edit	code	directly	on	Heroku’s	servers,	nor	can	you	install	themes	or
plugins	(you	have	to	do	that	locally	and	push	the	new	code).

If	you	chose	a	provider	such	as	OpenShift	instead,	you	will	have	a	bit	more	control	over
your	PaaS,	You	can	connect	to	it	with	SSH	and	also	store	static	files	downloaded	by	apps.

It	is	something	like	this	we	are	looking	for;	it’s	just	that	we	want	to	host	our	own	platform
and	have	Docker	containers	used	in	the	background.

Dokku	–	Docker-powered	mini-Heroku
Dokku	can	be	found	at	https://github.com/progrium/dokku.	It	is	a	project	that	is	described
by	its	authors	as	follows:

“Docker	powered	mini-Heroku	in	around	100	lines	of	Bash.”

Feature	wise,	Dokku	carries	out	deployment	in	the	same	way	as	Heroku	does.	Let’s	install
Dokku	and	see	what	it	can	do	for	our	PaaS.

https://github.com/progrium/dokku

Installation
Dokku	requires	Ubuntu	14.04	to	run,	and	we	start	by	creating	a	new	EC2	instance	running
that.

Here	is	a	screenshot	of	what	we	see:

When	we	have	created	an	instance	and	have	it	up	and	running,	we	can	start	by	installing
Docker	itself:

sudo	apt-get	install	docker.io

When	that	is	done,	we	go	ahead	and	install	Dokku.

The	recommended	bootstrap	bash	installation	didn’t	work	for	me,	so	I	cloned	the	repo
instead:

cd	/tmp

git	clone	https://github.com/progrium/dokku.git

cd	dokku

sudo	make	install

dokku	version

Note
You	can	read	about	the	installation	process	on	the	official	installation	page	at
http://progrium.viewdocs.io/dokku/installation.

The	installation	part	will	take	a	while,	but	it	should	succeed.

According	to	the	document	through	the	preceding	link,	we	should	edit	the
/home/dokku/VHOST	file	to	hold	the	content	of	a	domain	name	we	plan	to	use.	We	skip	this
for	now	because	it	includes	setting	some	DNS	records.	When	we	leave	that	file	empty,	we
will	be	reaching	our	PaaS	in	the	form	of	http://ip:port.	We	will	come	back	to	this	step
at	a	later	point.

The	only	step	left	now	is	to	create	an	ssh	key	pair	on	our	local	machine	and	add	the	public
part	in	the	server	user	Dokku’s	authorized_keys	file	so	that	we	can	connect	with	Git	in	a
very	secure	way	without	using	a	password.

On	your	local	machine,	use	these	commands:

cd	~/.ssh

ssh-keygen	–t	rsa

http://progrium.viewdocs.io/dokku/installation

#I	named	my	key	pair	id_rsa

cat	id_rsa.pub

#copy	the	output	so	you	have	it	in	your	clipboard

On	the	server,	use	the	following:

#As	your	ubuntu	user

#Replace	<publickey>	with	the	key	you	just	copied

#<remoteuser>	can	be	replaced	with	anything,	like	"remoteuser".

echo	"<publickey>"	|	sudo	sshcommand	acl-add	dokku	<remoteuser>

If	you	name	your	ssh-key	something	other	than	id_rsa,	you	will	have	to	edit	your	local
.ssh/config	file	to	get	it	to	work.

Now	the	Dokku	configuration	is	done	and	we	should	be	able	to	start	using	it.

Creating	a	sample	Dokku	app
It	is	time	for	us	to	set	up	a	demo	app	just	so	that	you	can	learn	the	process.	In	this	case,
let’s	take	Heroku’s	Node.js	sample	app.

We	start	off	by	cloning	Heroku’s	node-js-sample	GitHub	repository	to	get	the	app’s
content.	The	following	tasks	are	all	supposed	to	be	done	on	your	local	machine,	and	when
I	enter	server.com,	you	should	enter	the	URL	or	the	IP	address	of	your	server.	If	you	use	a
domain,	make	sure	that	you’ve	set	up	DNS	records	for	it	or	entered	a	record	in	your	local
/etc/hosts	file:

#Clone	the	repo

git	clone	git@github.com:heroku/node-js-sample.git

cd	node-js-sample

#Add	a	Dokku	git	remote

git	remote	add	dokku	dokku@server.com:first-app

#Push	to	Dokku

git	push	dokku	master

When	we	push	to	a	non-existing	branch	or	app	name	in	Dokku,	Dokku	will	create	a	new
app	and	deploy	it.	When	the	push	is	done,	you	should	see	something	like	this	at	the	bottom
of	the	output:

=====>	Application	deployed:

							http://54.191.69.5:49154

Of	course,	the	IP	address	and	port	will	not	be	the	same	for	you.

The	output	is	displayed,	as	follows:

Enter	the	ip:port	in	your	web	browser	to	find	yourself	a	page	saying	Hello	World.
We’ve	just	deployed	our	first	app	on	Dokku!

To	modify	and	redeploy	the	site,	we	can	create	a	file	named	index.html	inside	public/
folder	in	our	node-js-sample	project.	This	node	app	will	always	look	for	files	in	the
public	folder.	If	the	requested	file	isn’t	found,	the	app	falls	back	to	just	printing	Hello
World.	So,	if	we	create	a	file	and	request	it,	the	node	server	will	serve	it	to	us.

Paste	this	as	the	content	of	the	index.html	file:

<!DOCTYPE	html>

<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<title>Hello</title>		</head>

		<body>

				<h1>First	edit!</h1>

		</body>

</html>

It’s	a	simple	HTML	page.

Let’s	go	ahead	and	create	the	file	and	push	it,	as	shown	in	the	following	code:

nano	public/index.html

#paste	the	HTML

#save	the	file

#commit	your	changes

git	add	public/index.html

git	commit	–m	"Added	first	HTML	page."

#push	to	dokku

git	push	dokku	master

Note
Note	from	the	output	that	the	port	will	change	every	time	you	deploy,	since	a	new
container	is	created	and	your	old	container	is	shut	down.

Later,	when	we	add	a	domain	name	to	deploy	on,	the	URL	will,	of	course,	be	the	same.
The	Nginx	config	file	is	updated	upon	deployment.	Point	your	browser	to	the	new
ip:port,	and	you	should	see	a	huge	headline	saying	First	edit!.

Whenever	you	make	edits,	just	push	them.	Dokku	will	take	care	of	the	rest.

How	Dokku	works
As	I	described	the	basic	step	of	Heroku	earlier,	you	might	recognize	the	steps	when
deploying	on	Dokku,	and	that	is	also	Dokku’s	goal.	They	want	people	like	us	to	feel
comfortable	with	the	deployment	process.

Dokku	can	be	seen	as	the	glue	between	the	following	tools:	Docker,	Buildstep,	ssh-
command,	pluginhook,	ssh,	git,	and	nginx.	The	source	code	is	just	about	100	lines	long,
and	it	ships	with	a	few	plugins	that	together	contain	about	500	lines	of	code.	This	is	the
power	of	Dokku—anyone	can	write	plugins	to	extend	the	functionality	of	Dokku.

We	have	not	yet	installed	any	plugins,	and	a	clean	installation	like	ours	can	do	only	basic
stuff	such	as	deploy,	see	an	app’s	logs,	delete	an	app,	and	run	a	command	in	the	app’s
container.	There	are	quite	a	lot	of	plugins;	they	are	all	listed	at
http://progrium.viewdocs.io/dokku/plugins.

The	receive	process
If	we	take	a	look	at	the	main	Dokku	file	(named	dokku	in	the	projects	root),	we	notice	that
whenever	a	receive	action	is	triggered	(which	happens	when	we	push	to	the	master
branch),	we	see	this	code:

case	"$1"	in

		receive)

				APP="$2";	IMAGE="dokku/$APP"

				echo	"----->	Cleaning	up…"

				dokku	cleanup

				echo	"----->	Building	$APP…"

				cat	|	dokku	build	$APP

				echo	"----->	Releasing	$APP…"

				dokku	release	$APP

				echo	"----->	Deploying	$APP…"

				dokku	deploy	$APP

				echo	"=====>	Application	deployed:"

									dokku	urls	$APP	|	sed	"s/^/							/"

				echo

				;;

Through	this	output	we	can	recognize	when	we	have	pushed	to	the	master.

If	we	follow	the	plugin	chain	when	deploy	is	called,	we	end	up	with	a	plugin	hook	named
post-deploy	being	called.	A	standard	plugin,	named	nginx-vhosts,	is	triggered,	and	this
in	turn	calls	a	function	inside	that	plugin	named	nginx:build-config.

A	code	snippet	from	that	preceding	file	looks	like	this:

case	"$1"	in

		nginx:build-config)

				APP="$2";	DOKKU_APP_LISTEN_PORT="$3";	DOKKU_APP_LISTEN_IP="${4}"

				VHOST_PATH="$DOKKU_ROOT/$APP/VHOST"

				WILDCARD_SSL="$DOKKU_ROOT/tls"

				SSL="$DOKKU_ROOT/$APP/tls"

				if	[[-z	"$DOKKU_APP_LISTEN_PORT"]]	&&	[[-f	"$DOKKU_ROOT/$APP/PORT"	

http://progrium.viewdocs.io/dokku/plugins

]];	then

						DOKKU_APP_LISTEN_PORT=$(<	"$DOKKU_ROOT/$APP/PORT")

				fi

				if	[[-z	"$DOKKU_APP_LISTEN_IP"]]	&&	[[-f	"$DOKKU_ROOT/$APP/IP"]];	

then

						DOKKU_APP_LISTEN_IP=$(<	"$DOKKU_ROOT/$APP/IP")

				fi

				[[-f	"$DOKKU_ROOT/$APP/ENV"]]	&&	source	$DOKKU_ROOT/$APP/ENV

				if	[[!	-n	"$NO_VHOST"]]	&&	[[-f	"$DOKKU_ROOT/$APP/VHOST"]];	then

						...

						NGINX_CONF="$PLUGIN_PATH/nginx-vhosts/templates/nginx.conf"

						SCHEME="http"

						...

						APP_NGINX_TEMPLATE="$DOKKU_ROOT/$APP/nginx.conf.template"

						if	[[-f	$APP_NGINX_TEMPLATE]];	then

								echo	"----->	Overriding	default	nginx.conf	with	detected	

nginx.conf.template"

								NGINX_CONF=$APP_NGINX_TEMPLATE

						fi

						xargs	-i	echo	"----->	Configuring	{}..."	<	$VHOST_PATH

						#	Include	SSL_VHOSTS	so	we	can	redirect	http	to	https	on	that	

hostname	as	well

						NOSSL_SERVER_NAME=$(echo	$NONSSL_VHOSTS	$SSL_VHOSTS|	tr	'\n'	'	')

						if	[[-n	"$DOKKU_APP_LISTEN_PORT"]]	&&	[[-n	"$DOKKU_APP_LISTEN_IP"	

]];	then

								echo	"----->	Creating	$SCHEME	nginx.conf"

								echo	"upstream	$APP	{	server	

$DOKKU_APP_LISTEN_IP:$DOKKU_APP_LISTEN_PORT;	}"	>	

$DOKKU_ROOT/$APP/nginx.conf

								eval	"cat	<<<	\"$(<	$NGINX_CONF)\"	>>	$DOKKU_ROOT/$APP/nginx.conf"

								echo	"----->	Running	nginx-pre-reload"

								pluginhook	nginx-pre-reload	$APP	$DOKKU_APP_LISTEN_PORT	

$DOKKU_APP_LISTEN_IP

								echo	"							Reloading	nginx"

								restart_nginx

						fi

				else

						if	[[-f	"$DOKKU_ROOT/$APP/VHOST"]];	then

								echo	"----->	VHOST	support	disabled,	deleting	$APP/VHOST"

								rm	"$DOKKU_ROOT/$APP/VHOST"

						fi

						if	[[-f	"$DOKKU_ROOT/$APP/nginx.conf"]];	then

								echo	"----->	VHOST	support	disabled,	deleting	nginx.conf"

								rm	"$DOKKU_ROOT/$APP/nginx.conf"

								echo	"----->	VHOST	support	disabled,	reloading	nginx	after	

nginx.conf	deletion"

								restart_nginx

						fi

				fi

				;;

If	we	look	through	that	code,	we	can	see	that	it	looks	for	a	domain	name	in	the
$DOKKU_ROOT/$APP/VHOST	file,	and	if	that	is	found,	sets	some	config	variables	and	inserts
them	into	a	copy	of	the	templates/nginx.conf	file.

That	file	has	these	contents:

server	{

		listen						[::]:80;

		listen						80;

		server_name	$NOSSL_SERVER_NAME;

		location				/	{

				proxy_pass		http://$APP;

				proxy_http_version	1.1;

				proxy_set_header	Upgrade	\$http_upgrade;

				proxy_set_header	Connection	"upgrade";

				proxy_set_header	Host	\$http_host;

				proxy_set_header	X-Forwarded-Proto	\$scheme;

				proxy_set_header	X-Forwarded-For	\$remote_addr;

				proxy_set_header	X-Forwarded-Port	\$server_port;

				proxy_set_header	X-Request-Start	\$msec;

		}

		include	$DOKKU_ROOT/$APP/nginx.conf.d/*.conf;

}

Now	that	looks	very	much	like	the	nginx	config	we	created	in	the	last	chapter,	right?	The
post-deploy	part	of	Dokku	is	basically	Jason	Wilder’s	nginx-proxy.	They	accomplish	the
same	result,	but	they	get	there	in	very	different	ways.

Dokku	plugins
Add-ons	in	Heroku	are	called	plugins	in	Dokku.	Since	we	cannot	specify	docker	run
command	parameters	directly	from	Dokku,	we	need	plugins	to	connect	containers	and	add
data	volume	containers.

Here’s	a	list	of	a	few	usable	Dokku	plugins	that	we’ll	soon	use.

Dokku	domains	plugin
Dokku	domain	plugin	enables	you	to	specify	multiple	domains	in	one	app.	By	default,
only	one	URL	can	be	mapped	to	an	app:

dokku	domains:set	myawesomeapp.com	www.myawesomeapp.com

URL:	https://github.com/wmluke/dokku-domains-plugin

Dokku-docker-options
With	this	plugin,	you	can	pass	any	options	to	the	Docker	daemon	when	docker	run
command	is	executed.	It	can	be	used	to	mount	volumes,	link	containers,	and	so	on:

dokku	docker-options:add	myapp	"-v	/host/path:/container/path"

dokku	docker-options:add	myapp	"-link	container_name:alias"

URL:	https://github.com/dyson/dokku-docker-options

Volume	plugin	for	Dokku
Here’s	a	plugin	that	enables	you	to	mount	volumes	on	your	service	containers.	It	also	has
commands	to	dump	(export)	and	restore	the	data:

dokku	volume:add	foo	/path/in/container

dokku	volume:dump	foo	/path/in/container	>	foo.tar.gz

URL:	https://github.com/ohardy/dokku-volume

Dokku-link
You	can	link	containers	with	this	plugin:

dokku	link:create	<app>	NAME	[ALIAS]

dokku	link:delete	<app>	NAME	[ALIAS]

URL:	https://github.com/rlaneve/dokku-link

MariaDB	plugin	for	Dokku
This	plugin	enables	you	to	create	and	use	MariaDB	containers.	MariaDB	can	be	used	as	a
replacement	for	MySQL	and	is	generally	faster:

dokku	mariadb:create	<app>

dokku	mariadb:link	<app>	<db>

dokku	mariadb:dumpraw	<app>

URL:	https://github.com/Kloadut/dokku-md-plugin

https://github.com/wmluke/dokku-domains-plugin
https://github.com/dyson/dokku-docker-options
https://github.com/ohardy/dokku-volume
https://github.com/rlaneve/dokku-link
https://github.com/Kloadut/dokku-md-plugin

MySQL	plugin:	https://github.com/hughfletcher/dokku-mysql-plugin

https://github.com/hughfletcher/dokku-mysql-plugin

Setting	up	a	WordPress	app	with	Dokku
Now	that	we	have	played	around	with	Dokku	for	a	while,	exploring	how	it	works	and
what	plugins	are	available,	it’s	time	to	set	up	a	WordPress	site.	After	all,	that’s	why	we
were	exploring	it	in	the	first	place.

This	is	what	we	are	going	to	do:

1.	 Create	a	new	local	Git	repository	and	download	WordPress	on	it.
2.	 Install	the	MariaDB	plugin,	create	a	database,	and	link	it	to	our	app.
3.	 Configure	WordPress	to	connect	to	our	linked	database.

On	your	local	computer,	download	and	unpack	the	latest	version	of	WordPress	and	create
a	new	Git	repository.	Create	a	composer.json	file	to	tell	Dokku	that	this	is	a	PHP	app	we
are	creating.

Note
You	can	read	more	about	how	to	hint	Dokku	on	what	type	of	app	you	are	creating	at
https://devcenter.heroku.com/articles/buildpacks	(yes,	Dokku	uses	Heroku	buildpacks)	and
looks	to	detect	functions.	Dokku	uses	a	library	called	Buildstep	to	make	application	builds
using	Docker	and	Buildpacks.

Let’s	go	ahead	and	get	started	now.

I	used	a	server	on	my	domain,	ohdokku.com,	for	this	app:

#Download	Wordpress

curl	-O	https://wordpress.org/latest.zip

unzip	latest.zip

mv	wordpress	wp1

cd	wp1

#Create	a	new	Git	repo

git	init

git	add	.

git	commit	–m	"Initial	commit."

#Create	a	composer.json	file	to	tell	Dokku	we	are	using	php

echo	'{}'	>	composer.json

git	add	.

git	commit	-am	"Add	composer.json	for	PHP	app	detection."

#Add	a	remote	so	we	can	push	to	Dokku

git	remote	add	dokku	dokku@ohdokku.com:wp1

On	the	server	we	have	to	install	the	MariaDB	or	MySQL	plugin:

cd	/var/lib/dokku/plugins

sudo	git	clone	--recursive	https://github.com/Kloadut/dokku-md-plugin	

mariadb

cd	mariadb/dockerfiles/

git	checkout	master

https://devcenter.heroku.com/articles/buildpacks
http://ohdokku.com

cd	../../

sudo	dokku	plugins-install

Back	to	the	client	side	(you	can	do	this	on	the	server	as	well,	but	the	whole	point	of	this
type	of	PaaS	is	being	able	to	do	all	of	this	repetitive	stuff	on	the	client).

The	result	is	as	follows:

As	you	can	see,	the	output	from	the	create	command	will	show	our	database	credentials.

Now	that	the	database	is	set	up,	we	can	go	ahead	and	push	our	app	for	the	first	time:

git	push	dokku	master

You	should	notice	that	Dokku	detects	that	you	are	pushing	a	PHP	app.	Since	we	haven’t
specified	anything	at	all	in	our	composer.json	file,	a	default	package	of	PHP	and
Apache2	will	fire	up.

Create	a	MariaDB	database	called	wp1_db:

ssh	dokku@ohdokku.com	mariadb:create	wp1_db

ssh	dokku@ohdokku.com	mariadb:link	wp1	wp1_db

If	we	enter	ip:port	in	a	browser,	a	known	page	welcomes	us—the	WordPress	installation
page.	When	we	click	on	the	Continue	button,	we	see	that	we	can’t	continue	before	we
create	a	wp-config.php	file.

We	have	just	created	the	link	between	the	MariaDB	container	and	the	WP	container,	but
we	haven’t	made	the	link	in	code	yet.	WordPress	has	no	idea	how	to	connect	to	the
database.

We	start	off	by	renaming	the	wp-config-sample.php	file	to	wp-config.php	and	opening
the	file	in	an	editor:

//	**	MySQL	settings	-	You	can	get	this	info	from	your	web	host	**	//

/**	The	name	of	the	database	for	Wordpress	*/

define('DB_NAME',	getenv('DB_NAME'));

/**	MySQL	database	username	*/

define('DB_USER',	'root');

/**	MySQL	database	password	*/

define('DB_PASSWORD',	getenv('DB_PASSWORD'));

/**	MySQL	hostname	*/

define('DB_HOST',	getenv('DB_HOST').":".getenv('DB_PORT'));

Edit	the	credentials	as	you	just	saw	to	make	WordPress	look	for	environment	variables
that	our	linked	MariaDB	gives	us:

git	add	–A	.

git	commit	–m	"Add	wp-config.php	and	add	credentials."

git	push	dokku	master

Wait	until	you	get	a	new	ip:port	that	our	app	is	deployed	to,	and	then	enter	the	info	in
your	web	browser.

Now	you	should	be	able	to	install	WordPress.

The	output	is	as	follows:

Starting	multiple	apps
To	start	multiple	apps	with	Dokku,	just	repeat	the	simple	process,	as	follows:

1.	 Create	a	local	Git	repository	with	WordPress	in	it,	and	create	a	remote	Git	repository.
2.	 Create	and	link	a	database	with	the	MariaDB	plugin.

Edit	your	wp-config.php	file.

3.	 Push	to	deploy.

The	name	you	set	on	your	app	when	adding	the	remote	from	Git	command:

git	remote	add	dokku	dokku@ohdokku.com:wp1

This	command	will	create	the	URL	to	the	WordPress	site	(wp1.ohdokku.com).	You	can	set
a	complete	custom	domain	as	the	name	like:	git	remote	add	dokku
dokku@ohdokku.com:wp1.oskarhane.com	that	will	work	if	I	point	wp1.oskarhane.com	to
my	server.

http://wp1.ohdokku.com
http://wp1.oskarhane.com

Adding	a	domain	to	Dokku
I	waited	with	setting	up	domains	to	Dokku,	since	it	involves	logging	in	to	a	DNS	provider
and	setting	up	DNS	records	to	point	the	domain	to	our	server.	We	set	up	DNS	records	to
point	our	domain	name	to	our	server’s	IP	address	so	that	our	server	can	be	reached	by
entering	our	domain	name	in	the	web	browser’s	location	bar.

I	usually	use	Amazon	Route	53	to	handle	DNS	for	domains,	since	they’re	very	stable	and
easy	to	use.	It	costs	about	a	dollar	a	month	for	low-traffic	sites.	The	setup	is	the	same	for
any	DNS	provider.	You	have	to	add	two	records,	one	for	yourdomain.com	and	one	for
*.yourdomain.com.

The	records	we	are	going	to	enter	are	A-records,	which	means	that	we	point	the	domain
names	to	a	specific	IPv4	address.	The	Time	To	Live	(TTL)	value	is	not	important	right
now,	but	it	means	TTL	and	tells	all	other	DNS	servers	that	get	requests	for	this	domain
how	long	they	can	cache	the	current	value.

The	output	is	as	follows:

You	should,	of	course,	change	the	IP	to	the	public	IP	your	server	has.	When	setting	the	A-
record	for	the	wildcard	subdomains,	just	enter	*	in	the	input	field	at	the	top.

To	see	whether	your	DNS	provider	can	resolve	your	domain	name,	execute	ping
yourdomain.com	in	a	terminal.	You’ll	see	the	resolved	IP	right	there.	If	you’ve	just	bought
the	domain,	you	should	be	able	to	see	the	result	right	away,	but	if	you’ve	used	the	domain
for	a	while,	the	old	TTL	value	might	delay	the	effect	a	bit.

If	you	want	to	wait	for	the	setting	of	DNS	records	(which	is	common	during
development),	you	can	set	local	records	on	your	computer	by	editing	the	/etc/hosts	file,
as	shown	in	the	following	command	snippet:

sudo	nano	/etc/hosts

#Add	this	line	to	the	file

54.191.69.5	ohdokku.com

#Save	and	exit

One	thing	to	remember	here	is	that	you	can’t	enter	records	for	wildcard	subdomains.	If
you	plan	to	develop	multiple	apps	on	subdomains,	you	have	to	enter	one	record	for	each	of
them.	Also,	don’t	forget	to	remove	these	records	when	you’re	done;	it	can	get	quite
confusing	(and	interesting)	when	you	forget	you	have	records	for	the	domains	you	used.

On	the	Dokku	server,	create	a	file	named	/home/dokku/VHOST	and	enter	yourdomain.com
in	it.

All	apps	being	created	from	now	on	will	be	subdomains	of	this	domain,	unless	you	give
the	apps	complete	domain	names.

More	notes	on	Dokku
Just	like	Heroku,	Dokku	makes	it	easy	for	developers	to	deploy	and	push	code.	If	you
download	a	WordPress	plugin	straight	from	your	Dokku	app,	it	will	be	gone	when	you
restart	your	Dokku	app.	It	is	advisable	to	keep	a	local	copy	that	can	easily	be	started	or	a
dev,	test,	and	staging	server	that	you	can	download	new	plugins	on	and	push	to	your
Dokku	app	from	to	ensure	they	are	persistent.

Tip
Images	and	videos	should	be	uploaded	to	something	such	as	Amazon	via	a	plugin	when
using	this	kind	of	infrastructure.

You	must	also	have	your	WordPress	site	send	e-mails	from	an	external	e-mail	provider,
such	as	Mandrill.	A	plugin	like	WP	Mail	SMTP	will	solve	that	for	you.

We	still	have	a	few	manual	steps	(for	example,	downloading	WordPress	and	editing	wp-
config.php)	to	do	when	deploying	a	WordPress	app	on	Dokku,	but	the	task	of	creating	a
custom	Buildstep	to	remove	the	manual	parts	is	beyond	the	scope	of	this	book.

Another	option	is	to	have	Composer	handle	the	installation	of	WordPress	with	the
composer.json	file,	but	WordPress	does	not	officially	support	this	and	it	requires	a	few
hacks,	so	I’ll	leave	that	up	to	you.

Note
If	you	want	to	learn	more	about	composer,	you	can	go	to	the	provided	link
http://wpackagist.org.

http://wpackagist.org

Summary
In	this	chapter,	we	went	all	the	way	to	create	our	own	PaaS	by	adding	deployment	to	the
process.	What	we	looked	into	up	to	this	chapter	was	all	about	organizing	containers	and
direct	incoming	traffic	so	that	visitors	can	reach	the	correct	container.

With	Dokku,	we	don’t	have	to	worry	about	that;	all	we	have	to	care	about	is	our	code.	As
soon	as	we	push	our	code,	Dokku	takes	over	and	does	the	right	things.	Dokku	makes	it
look	really	easy	and	that	is	why,	I	started	from	manually	creating	and	linking	containers
and	configuring	reverse	proxies—so	that	you	would	understand	what	Dokku	does.

The	next	chapter	takes	us	to	the	bleeding	edge:	what’s	being	developed	right	now	that	can
take	private	PaaS	with	Docker	one	step	further?

Chapter	8.	What’s	Next?
So	far,	we	have	run	our	PaaS	on	a	single	host,	which	can	be	a	problem	if	we	need	to	scale
out.	There	is	a	lot	happening	in	this	space,	and	I	have	selected	a	few	projects	that	I	will
introduce	in	this	chapter.	These	projects	vary	a	lot	in	how	mature	they	are,	one	is	ready	for
use	in	production	while	the	other	is	in	a	prototype	state.	In	this	chapter,	we	will	cover	the
following	topics:

What	is	a	Twelve-Factor	app?
Flynn
Deis
Rocket
Orchestration	tools

What	is	a	Twelve-Factor	app?
Many	of	today’s	apps	are,	in	fact,	web	apps	that	you	run	in	your	web	browser.	Gmail,
Slack,	Wunderlist,	Trello,	and	so	on	are	all	web	apps	or	software-as-a-service.

It	is	these	kind	of	apps	that	are	suitable	to	be	run	on	a	PaaS.

The	Twelve-Factor	app	is	a	methodology	for	building	software-as-a-service	apps	that
fulfill	the	following	criteria:

Use	declarative	formats	to	set	up	automation	as	well	as	to	minimize	the	time	and	cost
for	new	developers	who	join	the	project
Have	a	clean	contract	with	the	underlying	operating	system,	offering	maximum
portability	between	execution	environments
Suitable	for	deployment	on	modern	cloud	platforms,	obviating	the	need	for	servers
and	systems	administration
Minimize	divergence	between	development	and	production,	enabling	continuous
deployment	for	maximum	agility
Scale	up	without	significant	changes	to	tooling,	architecture,	or	development
practices

The	Twelve	Factors	are	defined	as	follows:

Codebase	(One	codebase	tracked	in	revision	control,	many	deploys):	This	puts	your
code	in	a	version	control	system	such	as	Git.
Dependencies	(Explicitly	declare	and	isolate	dependencies):	This	lists	all	the
versions	of	all	the	libraries	that	your	app	depends	on	in	a	single	place.
Config	(Store	config	in	the	environment):	Since	config	will	vary	between
environments	such	as	the	username	or	pass	to	a	database,	it	should	not	be	part	of	the
code.	You	can	set	the	config	file	in	environment	variables	and	have	your	app	read
them	in	at	runtime.
Backing	Services	(Treat	backing	services	as	attached	resources):	These	have	all	the
backing	services,	such	as	mail	server,	database,	and	cache	system,	among	others.
These	will	be	referenced	by	a	URL	endpoint.	This	way	your	code	doesn’t	have	to
care	whether	the	backing	service	is	running	on	the	same	machine	or	across	the	world.
Build,	release,	run	(Strictly	separate	build	and	run	stages):	The	build	stage	creates
bundles,	assets,	and	binaries.	This	is	the	developer’s	job.	When	you’ve	placed	a
package	on	a	server,	you	are	ready	to	enter	the	run	stage	by	starting	your	application
and	making	it	available	on	the	server.	This	stage	should	be	as	easy	as	possible	so	that
anyone	can	do	it.
Processes	(Execute	the	app	as	one	or	more	stateless	processes):	As	stated	earlier	in
this	book,	you	should	separate	your	application	data	from	your	application	service,
that	is,	it	makes	the	service	stateless.	All	the	states	should	be	in	the	shared	storages
and	databases.
Port	binding	(Export	services	via	port	binding):	An	example	is	backing	services;
your	service	should	be	reachable	via	a	URL	endpoint.
Concurrency	(Scale	out	via	the	process	model):	This	keeps	every	process	as	an

independent	service.	This	way	you	can	scale	just	the	parts	of	your	app	that	really
need	to	be	scaled.
Disposability	(Maximize	robustness	with	a	fast	startup	and	graceful	shutdown):	This
is	for	app	startup,	which	should	be	fast,	and	your	app	should	be	able	to	recover	from
a	crash	by	itself.
Dev/prod	parity	(Keep	development,	staging,	and	production	as	similar	as	possible):
This	keeps	your	development	environment	and	setup	as	equal	as	possible	to	your
production	environment	and	setup.	Docker	really	excels	here.
Logs	(Treat	logs	as	event	streams):	Place	your	app’s	error	logs	into	a	central	place
where	you	get	notified	when	a	new	error	has	occurred.
Admin	processes	(Run	admin/management	tasks	as	one-off	processes):	If	you	are
doing	administrative	tasks,	run	them	on	a	machine	in	the	production	environment
with	the	latest	code	base.	You	should	run	queries	directly	against	the	database.

I	encourage	you	to	go	to	http://12factor.net	in	order	to	read	more	about	each	one	of	the
Twelve	Factors.	It’s	a	good	read;	you	will	get	an	understanding	of	why	some	design
decisions	were	made	on	the	following	projects.

http://12factor.net

Flynn

The	guy	who	created	Dokku,	Jeff	Lindsay,	has	also	co-created	Flynn.	Flynn	is	like	a
super-Dokku	that,	among	other	things,	lets	you	run	your	PaaS	on	multiple	hosts.

“Flynn	is	two	things:

A	distribution	of	components	that	out-of-the-box	gives	companies	a	reasonable
starting	point	for	an	internal	platform	for	running	their	applications	and	services.

The	banner	for	a	collection	of	independent	projects	that	together	make	up	a	toolkit	or
loose	framework	for	building	distributed	systems.

Flynn	is	both	a	whole	and	many	parts,	depending	on	what	is	most	useful	for	you.	The
common	goal	is	to	democratize	years	of	experience	and	best	practices	in	building
distributed	systems.	It	is	the	software	layer	between	operators	and	developers	that
makes	both	their	lives	easier.”

I	have	tried	using	Flynn	a	few	times,	but	I	have	always	gone	back	to	using	Dokku	again
because	I	find	Dokku	easier	to	use,	and	my	clients	don’t	need	the	extra	features	such	as
multihost	PaaS.

URL:	http://flynn.io

Status:	This	is	not	suitable	for	use	in	the	production	environment	because	it’s	in	a	beta
stage.

http://flynn.io

Deis

Deis	is	built	on	a	lightweight	Linux	distribution	that	is	built	to	run	containers,	called
CoreOS,	and	on	Docker	to	take	advantage	of	the	distributed	services,	such	as	etcd,
available	there.

“Deis	is	a	lightweight	application	platform	that	deploys	and	scales	Twelve-Factor
apps	as	Docker	containers	across	a	cluster	of	CoreOS	machines.”

I	found	Deis	to	be	a	very	promising	project	and	would	like	to	work	with	it	more.	I	have
barely	touched	it	but	what	I	have	seen	so	far	looks	good.

Deis	can	deploy	any	language	or	framework	running	on	Linux	using	Docker,	and	it	also
includes	Heroku	buildpacks	for	Ruby,	Python,	Node.js,	Java,	Clojure,	Scala,	Play,	PHP,
Perl,	Dart,	and	Go.

The	workflow	is	Heroku-like	and	you	just	need	to	deploy	twelve-factor	apps,	that	is,	save
the	application	state	in	a	backing	service.

Fun	fact:	Deis	financially	backs/supports	Dokku.

URL:	http://deis.io

State:	Deis	is	ready	for	production	from	version	1.0.

http://deis.io

Rocket

CoreOS	has	been	one	of	the	most	popular	ways	to	run	a	multihost	Docker	PaaS.	They
have	done	excellent	work	and	have	built	some	multihost	PaaS	tools,	such	as	Deis,	that	use
CoreOS	tools	and	services	to	deliver	their	version	of	PaaS.

In	December	2014,	the	CoreOS	team	decided	to	announce	their	own	container	runtime:
Rocket.	Rocket	is	a	direct	competitor	to	the	original	Docker.	The	reason	why	they	are
launching	Rocket	is	because	they	believe	Docker	has	lost	its	initial	idea:	running	reusable
standard	containers.	The	CoreOS	team	believes	that	Docker	is	stepping	away	from	the
initial	idea	by	adding	more	and	more	features	and	services	around	the	Docker
environment.

“Rocket	is	a	new	container	runtime,	designed	for	composability,	security,	and	speed.
Today	we	are	releasing	a	prototype	version	on	GitHub	to	begin	gathering	feedback
from	our	community	and	explain	why	we	are	building	Rocket.”

According	to	the	CoreOS	team,	they	will	continue	to	have	CoreOS	to	be	the	perfect	thing
to	run	Docker.	I	guess	we	will	see	what	happens	in	the	future,	but	I	hope	they	stand	by
their	words.

URL:	https://github.com/coreos/rocket

State:	Rocket	is	in	its	very	early	state	and	not	ready	for	production.

https://github.com/coreos/rocket

Orchestration	tools
The	tools	I	have	introduced	now	are	tools	that	will	help	you	keep	your	mind	on	the	code
and	give	you	an	easy	way	to	deploy	your	apps	to	production.	If	you	are	more	interested	in
an	orchestration	tool—a	tool	that	helps	you	manage	container	clusters—there	are	a	few	of
them	out	there	as	well.	The	tools	that	currently	come	to	mind	are	Google’s	Kubernetes,
Apache	Mesos/Marathon,	CoreOS	Fleet,	and	the	soon	to	be	released	Swarm	from	Docker.

Summary
When	you	feel	it’s	time	to	move	your	PaaS	from	a	single	host	to	scale	across	multiple
hosts,	these	tools	are	what	you	should	be	looking	for.	I’m	sure	some	worthy	competitors
will	pop	up	in	the	future	since	this	is	a	hot	area	right	now.

Index
A

Amazon
URL	/	Docker	on	Amazon	EC2

Amazon	EC2
using	/	Docker	on	Amazon	EC2
Docker,	installing	/	Installation
Docker,	upgrading	/	Upgrading	Docker	on	Amazon	EC2

Apache
preparing,	for	caching	/	Preparing	for	caching

B
base	image

about	/	The	Docker	image
Buildpacks

reference	link	/	Setting	up	a	WordPress	app	with	Dokku
Buildstep

about	/	Setting	up	a	WordPress	app	with	Dokku
BusyBox

about	/	Data	volume	image

C
command-line	interface

about	/	The	Docker	command-line	interface
commands,	Docker

about	/	Displaying	Hello	World
docker	ps	/	Displaying	Hello	World
docker	ps	-a	/	Displaying	Hello	World
docker	images	/	Displaying	Hello	World
docker	run	/	Displaying	Hello	World
docker	stop	/	Displaying	Hello	World

composer
reference	link	/	More	notes	on	Dokku

container
about	/	The	Docker	container

container	ID
about	/	The	Docker	container

containers
about	/	What	is	Docker?
parameters,	passing	/	Passing	parameters	to	containers
connecting,	manually	/	Manually	connecting	containers
connecting,	Docker	Compose	used	/	Connecting	containers	using	Docker
Compose
connecting,	Crane	used	/	Connecting	containers	using	Crane
setup	issue	/	The	problem	with	our	current	setup

Crane
used,	for	connecting	containers	/	Connecting	containers	using	Crane
about	/	Connecting	containers	using	Crane
installing	/	Installing	Crane
usage	/	Usage
lift	command	/	Usage
graph	command	/	Usage
logs	command	/	Usage
status	command	/	Usage
configuring	/	Configuration

D
data	volume	container

mounting	/	Mounting	a	data	volume	container
executing	/	Running	a	data	volume	container
contents,	exploring	/	Exploring	the	contents	of	a	data	volume	container

data	volume	image
creating	/	Creating	a	data	volume	images
BusyBox	/	Data	volume	image
mount	points,	exposing	/	Exposing	mount	points
Dockerfile	/	The	Dockerfile

data	volumes
about	/	Data	volumes
host	directory,	mounting	/	Mounting	a	host	directory	as	a	data	volume
data	volume	container,	mounting	/	Mounting	a	data	volume	container
backup	/	Backing	up	and	restoring	data	volumes
restoring	/	Backing	up	and	restoring	data	volumes

Deis
about	/	Deis
URL	/	Deis

Docker
about	/	What	is	Docker?
URL	/	What	is	Docker?
URL,	for	installation	/	User	permissions

Docker	Compose
used,	for	connecting	containers	/	Connecting	containers	using	Docker	Compose
about	/	Connecting	containers	using	Docker	Compose
installing	/	Installing	Docker	Compose
build	command	/	Basic	Docker	Compose	commands
kill	command	/	Basic	Docker	Compose	commands
logs	command	/	Basic	Docker	Compose	commands
port	command	/	Basic	Docker	Compose	commands
ps	command	/	Basic	Docker	Compose	commands
pull	command	/	Basic	Docker	Compose	commands
rm	command	/	Basic	Docker	Compose	commands
run	command	/	Basic	Docker	Compose	commands
scale	command	/	Basic	Docker	Compose	commands
start	command	/	Basic	Docker	Compose	commands
stop	command	/	Basic	Docker	Compose	commands
up	command	/	Basic	Docker	Compose	commands
service	/	Service
run	command,	using	/	Using	the	run	command
scale	command,	using	/	Using	the	scale	command
PaaS,	setting	up	/	Setting	up	our	PaaS	with	Docker	Compose

Dockerfile
about	/	Browsing	repositories
creating,	on	WordPress	image	/	Making	our	changes	persist

Dockerfile,	for	PHP	5.6
URL	/	Raising	the	upload	limit

Docker	Hub	registry
about	/	The	Docker	Registry	Hub
URL	/	The	Docker	Registry	Hub
repositories,	browsing	/	Browsing	repositories
published	images,	exploring	/	Exploring	published	images
image,	publishing	/	Publishing	an	image	on	the	Docker	Registry	Hub
image,	publishing	with	automated	build	option	/	Automated	builds

Docker	image
about	/	The	Docker	image
base	image	/	The	Docker	image
parent	images	/	The	Docker	image
hosting,	on	GitHub	/	Hosting	on	GitHub
publishing,	on	Docker	registry	hub	/	Publishing	on	the	Docker	Registry	Hub

docker	images	command
about	/	Displaying	Hello	World

Docker	on	Amazon	EC2
installing	/	Installation
open	ports	/	Open	ports
upgrading	/	Upgrading	Docker	on	Amazon	EC2
user	permissions	/	User	permissions

Docker	on	Mac	OS	X
installing	/	Docker	on	Mac	OS	X,	Installation
upgrading	/	Upgrading	Docker	on	Mac	OS	X

Docker	on	Ubuntu	Trusty	14.04	LTS
installing	/	Docker	on	Ubuntu	Trusty	14.04	LTS
upgrading	/	Upgrading	Docker	on	Ubuntu	Trusty	14.04	LTS
user	permissions	/	User	permissions

Docker	on	Windows
installing	/	Docker	on	Windows,	Installation
upgrading	/	Upgrading	Docker	on	Windows

docker	ps	-a	command
about	/	Displaying	Hello	World

docker	ps	command
about	/	Displaying	Hello	World

Docker	registry	hub
Docker	image,	publishing	/	Publishing	on	the	Docker	Registry	Hub

docker	run	command
about	/	Displaying	Hello	World

docker	stop	command

about	/	Displaying	Hello	World
Dokku

about	/	Dokku	–	Docker-powered	mini-Heroku
URL	/	Dokku	–	Docker-powered	mini-Heroku
installing	/	Installation
URL,	for	installation	/	Installation
sample	app,	creating	/	Creating	a	sample	Dokku	app
deploying	/	How	Dokku	works
receive	process	/	The	receive	process
plugins	/	Dokku	plugins
WordPress	app,	setting	up	/	Setting	up	a	WordPress	app	with	Dokku
multiple	apps,	starting	/	Starting	multiple	apps
domains,	adding	/	Adding	a	domain	to	Dokku
WordPress	app,	deploying	/	More	notes	on	Dokku

Dokku-docker-options
about	/	Dokku-docker-options
URL	/	Dokku-docker-options

Dokku-link	plugin
about	/	Dokku-link
URL	/	Dokku-link

Dokku	domains	plugin
about	/	Dokku	domains	plugin
URL	/	Dokku	domains	plugin

domains
mapping,	nginx-proxy	used	/	Automating	the	process	of	mapping	domains
adding,	to	Dokku	/	Adding	a	domain	to	Dokku

F
Flynn

about	/	Flynn
URL	/	Flynn

G
GitHub

image	sources,	hosting	/	Hosting	image	sources	on	GitHub
URL	/	Hosting	image	sources	on	GitHub
Docker	image,	hosting	/	Hosting	on	GitHub

H
HAProxy

about	/	Implementation	with	HAProxy
URL	/	Implementation	with	HAProxy
installing	/	Installing	HAProxy
configuring	/	Configuring	HAProxy
multiple	domains,	adding	/	Adding	more	domains	to	HAProxy

Heroku
about	/	The	tools/services	available

host	directory
mounting,	as	data	volume	/	Mounting	a	host	directory	as	a	data	volume

I
image	sources

hosting,	on	GitHub	/	Hosting	image	sources	on	GitHub
installation,	Crane

about	/	Installing	Crane
installation,	Docker

on	Ubuntu	Trusty	14.04	LTS	/	Docker	on	Ubuntu	Trusty	14.04	LTS
on	Mac	OS	X	/	Docker	on	Mac	OS	X,	Installation
on	Windows	/	Docker	on	Windows,	Installation
on	Amazon	EC2	/	Installation

installation,	Docker	Compose
about	/	Installing	Docker	Compose

installation,	Dokku
about	/	Installation

installation,	HAProxy
about	/	Installing	HAProxy

installation,	Nginx
about	/	Installing	Nginx

installation,	WP	Mail	SMTP
about	/	Plugin	installation

installation,	WP	Super	Cache
about	/	Plugin	installation

M
Mac	OS	X

Docker,	installing	/	Docker	on	Mac	OS	X,	Installation
Docker,	upgrading	/	Upgrading	Docker	on	Mac	OS	X

MariaDB	plugin
about	/	MariaDB	plugin	for	Dokku
URL	/	MariaDB	plugin	for	Dokku

multiple	containers,	with	same	services
problem	/	Explaining	the	problem
solution,	finding	/	Finding	a	solution
solution,	implementing	/	Implementing	the	solution

MySQL	docker	repository
URL	/	Exploring	published	images

N
Nginx

about	/	Implementation	with	Nginx
URL	/	Implementation	with	Nginx
installing	/	Installing	Nginx
configuring	/	Configuring	Nginx
multiple	domains,	adding	/	Adding	more	domains	to	Nginx

nginx-proxy
used,	for	mapping	domains	/	Automating	the	process	of	mapping	domains
URL	/	Automating	the	process	of	mapping	domains

O
OpenShift

about	/	The	tools/services	available
orchestration	tools

about	/	Orchestration	tools
OS	X	installer

URL	/	Installation

P
PaaS

setting	up,	with	Docker	Compose	/	Setting	up	our	PaaS	with	Docker	Compose
parameterized	image

creating	/	Creating	a	parameterized	image
parent	images

about	/	The	Docker	image
plugins,	Dokku

about	/	Dokku	plugins
Dokku	domain	plugin	/	Dokku	domains	plugin
Dokku-docker-options	/	Dokku-docker-options
volume	plugin	/	Volume	plugin	for	Dokku
Dokku-link	plugin	/	Dokku-link
MariaDB	plugin	/	MariaDB	plugin	for	Dokku

Procfile
about	/	The	tools/services	available

proxy	server
about	/	Finding	a	solution

published	images
exploring	/	Exploring	published	images

R
receive	process,	Dokku

about	/	The	receive	process
repositories

browsing	/	Browsing	repositories
reverse	proxies

about	/	Finding	a	solution
Rocket

about	/	Rocket
URL	/	Rocket

S
solution,	multiple	containers	with	same	services

implementing,	with	HAProxy	/	Implementation	with	HAProxy
implementing,	with	Nginx	/	Implementation	with	Nginx

T
tags

about	/	The	Docker	image
Time	to	live	(TTL)

about	/	Adding	a	domain	to	Dokku
tools/services

OpenShift	/	The	tools/services	available
Heroku	/	The	tools/services	available

Twelve-Factor	app
about	/	What	is	a	Twelve-Factor	app?
URL	/	What	is	a	Twelve-Factor	app?

twelve	factors
codebase	/	What	is	a	Twelve-Factor	app?
dependencies	/	What	is	a	Twelve-Factor	app?
config	/	What	is	a	Twelve-Factor	app?
backing	services	/	What	is	a	Twelve-Factor	app?
build	/	What	is	a	Twelve-Factor	app?
release	/	What	is	a	Twelve-Factor	app?
run	/	What	is	a	Twelve-Factor	app?
processes	/	What	is	a	Twelve-Factor	app?
port	binding	/	What	is	a	Twelve-Factor	app?
concurrency	/	What	is	a	Twelve-Factor	app?
disposability	/	What	is	a	Twelve-Factor	app?
dev/prod	parity	/	What	is	a	Twelve-Factor	app?
logs	/	What	is	a	Twelve-Factor	app?
admin	processes	/	What	is	a	Twelve-Factor	app?

U
Ubuntu	Trusty	14.04	LTS

Docker,	installing	/	Docker	on	Ubuntu	Trusty	14.04	LTS
Docker,	upgrading	/	Upgrading	Docker	on	Ubuntu	Trusty	14.04	LTS

V
volume	plugin

about	/	Volume	plugin	for	Dokku
URL	/	Volume	plugin	for	Dokku

W
Windows

Docker,	installing	/	Docker	on	Windows,	Installation
Docker,	upgrading	/	Upgrading	Docker	on	Windows

Windows	installer
URL	/	Installation

WordPress
configuring	/	Moving	from	the	defaults

WordPress	app
setting	up,	with	Dokku	/	Setting	up	a	WordPress	app	with	Dokku
multiple	apps,	starting	/	Starting	multiple	apps
domains,	adding	to	Dokku	/	Adding	a	domain	to	Dokku
deploying,	on	Dokku	/	More	notes	on	Dokku

WordPress	Docker	image
URL	/	Exploring	published	images

WordPress	image
creating	/	The	WordPress	image
objective	/	Our	objective

WordPress	image,	objective
Apache,	preparing	for	caching	/	Preparing	for	caching
upload	limit,	raising	/	Raising	the	upload	limit
WP	Super	Cache,	installing	/	Plugin	installation
WP	Mail	SMTP,	installing	/	Plugin	installation

WP	Mail	SMTP
installing	/	Plugin	installation

WP	Super	Cache
installing	/	Plugin	installation

	Build Your Own PaaS with Docker
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Installing Docker
	What is Docker?
	Docker on Ubuntu Trusty 14.04 LTS
	Upgrading Docker on Ubuntu Trusty 14.04 LTS
	User permissions
	Docker on Mac OS X
	Installation
	Upgrading Docker on Mac OS X
	Docker on Windows
	Installation
	Upgrading Docker on Windows
	Docker on Amazon EC2
	Installation
	Open ports
	Upgrading Docker on Amazon EC2
	User permissions
	Displaying Hello World
	Summary
	2. Exploring Docker
	The Docker image
	The Docker container
	The Docker command-line interface
	The Docker Registry Hub
	Browsing repositories
	Exploring published images
	Summary
	3. Creating Our First PaaS Image
	The WordPress image
	Moving from the defaults
	Our objective
	Preparing for caching
	Raising the upload limit
	Plugin installation
	Making our changes persist
	Hosting image sources on GitHub
	Publishing an image on the Docker Registry Hub
	Automated builds
	Summary
	4. Giving Containers Data and Parameters
	Data volumes
	Mounting a host directory as a data volume
	Mounting a data volume container
	Backing up and restoring data volumes
	Creating a data volume images
	Data volume image
	Exposing mount points
	The Dockerfile
	Hosting on GitHub
	Publishing on the Docker Registry Hub
	Running a data volume container
	Passing parameters to containers
	Creating a parameterized image
	Summary
	5. Connecting Containers
	Manually connecting containers
	Exploring the contents of a data volume container
	Connecting containers using Docker Compose
	Installing Docker Compose
	Basic Docker Compose commands
	Service
	Using the run command
	Using the scale command
	Setting up our PaaS with Docker Compose
	Connecting containers using Crane
	Installing Crane
	Usage
	Configuration
	Summary
	6. Reverse Proxy Requests
	Explaining the problem
	Finding a solution
	Implementing the solution
	Implementation with HAProxy
	Installing HAProxy
	Configuring HAProxy
	Adding more domains to HAProxy
	Implementation with Nginx
	Installing Nginx
	Configuring Nginx
	Adding more domains to Nginx
	Automating the process of mapping domains
	Summary
	7. Deployment on Our PaaS
	The problem with our current setup
	The tools/services available
	Dokku – Docker-powered mini-Heroku
	Installation
	Creating a sample Dokku app
	How Dokku works
	The receive process
	Dokku plugins
	Dokku domains plugin
	Dokku-docker-options
	Volume plugin for Dokku
	Dokku-link
	MariaDB plugin for Dokku
	Setting up a WordPress app with Dokku
	Starting multiple apps
	Adding a domain to Dokku
	More notes on Dokku
	Summary
	8. What's Next?
	What is a Twelve-Factor app?
	Flynn
	Deis
	Rocket
	Orchestration tools
	Summary
	Index

