پردازش توزیع شده با DuckDB
چگونه شرکت دیپسیک به جای استفاده از اسپارک و تنها با یک تیم چند نفره توانست یک زیرساخت پردازش توزیع شده داده ایجاد کند؟

در دنیای هوش مصنوعی، نام DeepSeek این روزها بیش از پیش شنیده میشود. شرکتی که با مدلهای قدرتمند خود توانسته توجه بسیاری را به خود جلب کند. یکی از مهمترین درسهای مهندسی که از دیپسیک میتوان گرفت، روشهای نوآورانهای است که این شرکت برای تأمین و پردازش حجم عظیم دادههای مورد نیاز خود به کار گرفته است. 🔥
DeepSeek با انتشار بخشی از ابزارهای داخلی خود در گیتهاب، به جامعه مهندسی داده نشان داده است که چگونه میتوان با سادهترین ابزارها، کارآمدترین سیستمها را ساخت. یکی از این پروژهها، SmallPond نام دارد:
🔗https://github.com/deepseek-ai/smallpond
💪 نکته جالبتر اینکه این پروژه تنها توسط دو توسعهدهنده (طبق لیست گیتهاب) پیادهسازی شده است! 🔥 چنین نتیجهای نشان میدهد که در دنیای امروز، خلاقیت مهمتر از منابع است.
🗂 اما یکی از رازهای اصلی این موفقیت در استفاده از چارچوب پردازشی Ray (یک فریمورک بسیار حرفهای در پردازش توزیع شده – مراجعه کنید به این پست : https://www.bigdata.ir/?p=8104) و سیستم فایل توزیعشدهای به نام ۳FS (توسعه داده شده توسط خود دیپسیک) نهفته است:
🔗 https://github.com/deepseek-ai/3FS
پروژه ۳FS یک سیستم فایل بهینه برای ذخیرهسازی توزیعشده و مخصوص نیازهای پروژههای هوش مصنوعی طراحی شده است. ترکیب این سیستم فایل با SmallPond یک زنجیره پردازش سبک، سریع و مقرونبهصرفه را به وجود آورده است.
🚀 در ماههای آینده انتظار داریم استفادههای نوآورانه بیشتری از DuckDB را در حوزه مهندسی داده بشنویم. 🔥
این پست از مقاله زیر الهام گرفته شده است :
https://mehdio.substack.com/p/duckdb-goes-distributed-deepseeks

DuckDB goes distributed? DeepSeek’s smallpond takes on Big Data
DeepSeek is pushing DuckDB beyond its single-node roots with smallpond, a new, simple approach to distributed compute. But does it solve the scalability challenge—or introduce new trade-offs?
https://mehdio.substack.com/p/duckdb-goes-distributed-deepseeks